预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共12页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号CN108960426A(43)申请公布日2018.12.07(21)申请号201810781498.8(22)申请日2018.07.09(71)申请人吉林大学地址130000吉林省长春市前进大街2699号(72)发明人刘宏飞方杏花许洪国王郭俊翟德屈亚洲许淼(74)专利代理机构石家庄新世纪专利商标事务所有限公司13100代理人李志民(51)Int.Cl.G06N3/08(2006.01)G06Q10/04(2012.01)B60W40/076(2012.01)权利要求书2页说明书6页附图3页(54)发明名称基于BP神经网络的道路坡度综合估计系统(57)摘要本发明涉及一种基于BP神经网络的道路坡度综合估计系统,包括:⑴车轮垂直载荷采集单元,包括车轮垂直载荷参考数据库和车轮实时垂直载荷模块,用于采集各个车轮的垂直载荷。⑵路面坡道类型判断单元,通过比较车轮实时垂直载荷模块的数据与车轮垂直载荷参考数据库的数据判断路面坡道类型。⑶BP神经网络预测单元,用于根据路面坡度类型判断单元的判断结果应用的相应的BP神经网络模块预测路面坡度信息。本发明利用基于BP神经网络的道路坡度综合估计系统,通过实车试验采集车辆数据,进行归一化处理得到训练样本集,利用BP神经网络训练,并经仿真验证输出的得到道路坡度估计模型,实时估计道路坡度,向驾驶员提供可实施的道路坡道信息。CN108960426ACN108960426A权利要求书1/2页1.一种基于BP神经网络的道路坡度综合估计系统,其特征是:所述系统包括:⑴车轮垂直载荷采集单元(5),包括车轮垂直载荷参考数据库(6)和车轮实时垂直载荷模块(7),用于采集各个车轮的垂直载荷;离线采集车辆在平直路面行驶的数据存在车轮垂直载荷参考数据库(6),车轮实时垂直载荷模块在线采集车辆行驶过程中车轮实时垂直载荷数据;⑵路面坡道类型判断单元(8),通过比较车轮实时垂直载荷模块(7)的数据与车轮垂直载荷参考数据库(6)的数据判断路面坡道类型;⑶BP神经网络预测单元(12),包括横向坡度BP神经网络模块(9)、纵向坡度BP神经网络模块(10)和组合坡度BP神经网络模块(11),用于根据路面坡度类型判断单元(8)的判断结果应用的相应的BP神经网络模块预测路面坡度信息。2.根据权利要求1所述的基于BP神经网络的道路坡度综合估计系统,其特征是:所述BP神经网络预测单元(12)中各BP神经网络模块的操作步骤为:采集数据、归一化处理、模型设计、网络训练和验证测试。3.根据权利要求2所述的基于BP神经网络的道路坡度综合估计系统,其特征是:所述采集数据采取实车试验方式,所述实车试验的数据包括横向坡道车辆爬坡试验数据、纵向坡道车辆爬坡试验数据和组合坡道车辆爬坡试验数据;所述横向坡道车辆爬坡试验数据为发动机扭矩、发动机转速、侧向速度、侧向加速度以及道路横向坡度信息;所述纵向坡道车辆爬坡试验数据为发动机扭矩、发动机转速、纵向车速、纵向加速度以及道路纵向坡度信息;所述组合坡道车辆爬坡试验数据为发动机转矩、发动机转速、车速、加速度以及道路组合坡度信息。4.根据权利要求2所述的基于BP神经网络的道路坡度综合估计系统,其特征是:将采集的数据进行归一化处理,所述归一化处理的公式为:式中:Xi为模型输入参数数据样本;Xmin和Xmax分别为各个数据样本变化范围的最小值和最大值;通过式⑴将三个向量归一化到区间[0,1]范围内,借助MATLAB方法编程,具体如下:X(i,:)=(x(i,:)-min(x(i,:)))/(max(x(i,:))-min(x(i,:)))。5.根据权利要求2所述的基于BP神经网络的道路坡度综合估计系统,其特征是:所述模型设计包括输入层、隐含层和输出层的确定,所述的BP神经网络包括横向坡度BP神经网络、纵向坡度BP神经网络和组合坡度BP神经网络;所述横向坡度BP神经网络、纵向坡度BP神经网络和组合坡度BP神经网络采用输入层、隐含层和输出层三层神经网络。6.根据权利要求5所述的基于BP神经网络的道路坡度综合估计系统,其特征是:所述横向坡度BP神经网络包括4个输入参数和1个输出参数,输入参数:X1为发动机转速,X2为发动机输出转矩,X3为侧向车速,X4为侧向加速度,输出参数M1为BP神经网络模型道路横向坡度估计值;所述纵向坡度BP神经网络包括4个输入参数和1个输出参数,输入参数:X1为发动机转速,X2为发动机输出转矩,X3为纵向车速,X4为纵向加速度,输出参数M2为BP神经网络模型道路纵向坡度估计值;所述组合坡度BP神经网络包括6个输入参数和1个输出参数,输入参数:X1为发动机转速,X2为发动机输出转矩,X3为侧向车速,X4为侧向加速度,X5为纵向车2CN108960