预览加载中,请您耐心等待几秒...
1/7
2/7
3/7
4/7
5/7
6/7
7/7

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

(一)研究等差等比数列的有关性质 1.研究通项的性质 例题1.已知数列满足. (1)求; (2)证明:. 解:(1). (2)证明:由已知,故 ,所以证得. 例题2.数列的前项和记为 (Ⅰ)求的通项公式; (Ⅱ)等差数列的各项为正,其前项和为,且,又成等比数列,求. 解:(Ⅰ)由可得, 两式相减得:, 又∴故是首项为1,公比为3的等比数列 ∴ (Ⅱ)设的公比为,由得,可得,可得 故可设,又, 由题意可得,解得 ∵等差数列的各项为正,∴∴ ∴ 例题3.已知数列的前三项与数列的前三项对应相同,且 对任意的都成立,数列是等差数列. ⑴求数列与的通项公式; ⑵是否存在,使得,请说明理由. 点拨:(1)左边相当于是数列前n项和的形式,可以联想到已知求的方法,当时,. (2)把看作一个函数,利用函数的思想方法来研究的取值情况. 解:(1)已知…)① 时,…)② ①-②得,,求得, 在①中令,可得得, 所以N*). 由题意,,,所以,, ∴数列的公差为, ∴, ). (2), 当时,单调递增,且, 所以时,, 又, 所以,不存在,使得. 例题4.设各项均为正数的数列{an}和{bn}满足:an、bn、an+1成等差数列,bn、an+1、bn+1成等比数列,且a1=1,b1=2,a2=3,求通项an,bn 解:依题意得: 2bn+1=an+1+an+2① a2n+1=bnbn+1② ∵an、bn为正数,由②得, 代入①并同除以得:, ∴为等差数列 ∵b1=2,a2=3,, ∴, ∴当n≥2时,, 又a1=1,当n=1时成立,∴ 2.研究前n项和的性质 例题5.已知等比数列的前项和为,且. (1)求、的值及数列的通项公式; (2)设,求数列的前项和. 解:(1)时,.而为等比数列,得, 又,得,从而.又. (2), ),得, . 例题6.数列是首项为1000,公比为的等比数列,数列满足 , (1)求数列的前项和的最大值;(2)求数列的前项和. 解:(1)由题意:,∴,∴数列是首项为3,公差为的等差数列, ∴,∴ 由,得,∴数列的前项和的最大值为. (2)由(1)当时,,当时,, ∴当时, 当时, ∴. 例题7.已知递增的等比数列{}满足,且是,的等差中项. (1)求{}的通项公式;(2)若,求使成立的的最小值. 解:(1)设等比数列的公比为q(q>1),由 a1q+a1q2+a1q3=28,a1q+a1q3=2(a1q2+2),得:a1=2,q=2或a1=32,q=(舍) ∴an=2·2(n-1)=2n (2)∵,∴Sn=-(1·2+2·22+3·23+…+n·2n) ∴2Sn=-(1·22+2·23+…+n·2n+1),∴Sn=2+22+23+…+2n-n·2n+1=-(n-1)·2n+1-2, 若Sn+n·2n+1>30成立,则2n+1>32,故n>4,∴n的最小值为5. 例题8.已知数列的前n项和为Sn,且成等差数列,.函数. (I)求数列的通项公式; (II)设数列满足,记数列的前n项和为Tn,试比较 的大小. 解:(I)成等差数列,①当时,②. ①-②得:,, 当n=1时,由①得,又 是以1为首项3为公比的等比数列, (II)∵,, , 比较的大小,只需比较与312的大小即可. ∵∴当时, 当时, 当时,. 3.研究生成数列的性质 例题9.(I)已知数列,其中,且数列为等比数列,求常数; (II)设、是公比不相等的两个等比数列,,证明数列不是等比数列. 解:(Ⅰ)因为{cn+1-pcn}是等比数列,故有 (cn+1-pcn)2=(cn+2-pcn+1)(cn-pcn-1), 将cn=2n+3n代入上式,得 [2n+1+3n+1-p(2n+3n)]2 =[2n+2+3n+2-p(2n+1+3n+1)]·[2n+3n-p(2n-1+3n-1)], 即[(2-p)2n+(3-p)3n]2 =[(2-p)2n+1+(3-p)3n+1][(2-p)2n-1+(3-p)3n-1], 整理得(2-p)(3-p)·2n·3n=0, 解得p=2或p=3. (Ⅱ)设{an}、{bn}的公比分别为p、q,p≠q,cn=an+bn. 为证{cn}不是等比数列只需证≠c1·c3. 事实上,=(a1p+b1q)2=p2+q2+2a1b1pq, c1·c3=(a1+b1)(a1p2+b1q2)=p2+q2+a1b1(p2+q2). 由于p≠q,p2+q2>2pq,又a1、b1不为零, 因此c1·c3,故{cn}不是等比数列. 例题10.n2(n≥4)个正数排成n行n列:其中每一行的数成等差数列,每一列的数成等比数列,并且所有公比相等已知a24=1, 求S=a11+a22+a33+…+ann 解:设数列{}的公差为d,数列{}(i=1,2,3,…,n)的公