预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共22页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2016年重庆市巴蜀中学高考数学一诊试卷(文科) 一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.集合A={x|y=lg(﹣x2+2x)},B={x||x|≤1},则A∩B=() A.{x|1≤x≤2} B.{x|0<x≤1} C.{x|﹣1≤x≤0} D.{x|x≤2} 2.已知复数z(1+i)=2i,则复数z=() A.1+i B.1﹣i C.+i D.﹣i 3.设x,y满足约束条件,则目标函数z=2x+3y的最大值为() A.4 B.6 C.16 D.26 4.执行如图所示的程序框图后,输出的结果为() A. B. C. D. 5.已知a,b为两条直线,α,β为两个平面,下列四个命题 ①a∥b,a∥α⇒b∥α;②a⊥b,a⊥α⇒b∥α; ③a∥α,β∥α⇒a∥β;④a⊥α,β⊥α⇒a∥β, 其中不正确的有() A.1个 B.2个 C.3个 D.4个 6.对于函数f(x)=xcosx,现有下列命题: ①函数f(x)是奇函数; ②函数f(x)的最小正周期是2π; ③点(,0)是函数f(x)的图象的一个对称中心; ④函数f(x)在区间[0,]上单调递增. 其中是真命题的为() A.②④ B.①④ C.②③ D.①③ 7.若在区间(﹣1,1)内任取实数a,在区间(0,1)内任取实数b,则直线ax﹣by=0与圆(x﹣1)2+(y﹣2)2=1相交的概率为() A. B. C. D. 8.在△ABC中,内角A,B,C的对边长分别为a,b,c,已知a2﹣c2=b,且sin(A﹣C)=2cosAsinC,则b=() A.6 B.4 C.2 D.1 9.已知O为坐标原点,F1,F2是双曲线﹣=1(a>0,b>0)的左、右焦点,P是双曲线右支上一点,PM为∠F1PF2的角平分线,过F1作PM的垂线交PM于点M,则|OM|的长度为() A.a B.b C. D. 10.已知y=f(x)是定义在R上的奇函数,且当x>0时不等式f(x)+xf′(x)<0成立,若a=30.3•f(30.3),b=logπ3•f(logπ3),c=log3•f(log3),则a,b,c大小关系是() A.b>a>c B.a>b>c C.a>c>b D.b>c>a 11.已知正三棱锥V﹣ABC的正视图、侧视图和俯视图如图所示,则该正三棱锥侧视图的面积是() A. B.6 C.8 D.6 12.若函数f(x)在[a,b]上的值域为[,],则称函数f(x)为“和谐函数”.下列函数中:①g(x)=+;②p(x)=;③q(x)=lnx;④h(x)=x2.“和谐函数”的个数为() A.1个 B.2个 C.3个 D.4个 二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.已知函数f(x)=,若f(x0)>0,则x0的取值范围是. 14.设等比数列{an}的前n项和为Sn,若S10=40,S20=120,则S30=. 15.已知S,A,B,C都是球O表面上的点,SA⊥平面ABC,AB⊥BC,SA=2,AB=3,BC=4,则球O的表面积等于. 16.△ABC中,∠A=120°,∠A的平分线AD交边BC于D,且AB=2,CD=2DB,则AD的长为. 三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.设函数f(x)=sinx+cosx(x∈R). (1)求函数f(x)的最小正周期和最值; (2)若f()=sinA,其中A是面积为的锐角△ABC的内角,且AB=2,求边AC和BC的长. 18.某班为了调查同学们周末的运动时间,随机对该班级50名同学进行了不记名的问卷调查,得到了如下表所示的统计结果: 运动时间不超过2小时运动时间超过2小时合计男生102030女生13720合计232750(1)根据统计结果,能否在犯错误概率不超过0.05的前提下,认为该班同学周末的运动时间与性别有关? (2)用分层抽样的方法,从男生中抽取6名同学,再从这6名同学中随机抽取2名同学,求这两名同学中恰有一位同学运动时间超过2小时的概率. 附:K2=,其中n=a+b+c+d. P(K2≥k0)0.500.400.250.150.100.050.0250.0100.0050.001k00.4550.7081.3232.0722.7063.845.0246.6357.87910.8319.如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,PC⊥AD.底面ABCD为梯形,AB∥DC,AB⊥BC,PA=AB=BC=1. (1)求证:平面PAB⊥平面PCB; (2)求四棱锥P﹣ABCD的体积V. 20.椭圆C:+=1(a>b>0),作直线l交椭圆于P,Q两点.M为线段PQ的中点,O为坐标原点,设直线1的斜率