预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共18页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

函数y=f(x)在点x1、x2、x3、x4处的函数值f(x1)、f(x2)、f(x3)、f(x4),与它们左右近旁各点处的函数值,相比有什么特点?一、函数的极值定义(1)函数的极值是就函数在某一点附近的小区间而言的,在函数的整个定义区间内可能有多个极大值或极小值,而最值是对整体而言。 (2)极大值不一定比极小值大。 (3)极值点不一定是最值点。观察与思考:极值与导数有何关系?f(x)<0注意:函数极值是在某一点附近的小区间内定义的,是局部性质。因此一个函数在其整个定义区间上可能有多个极大值或极小值,并对同一个函数来说,在某一点的极大值也可能小于另一点的极小值。1、求可导函数f(x)极值的步骤:例2求函数的极值。2、思考与讨论:在区间[-3,5]上,练习练习:下图是导函数的图象,在标记的点中,在哪一点处例4已知函数f(x)=x3+ax2+bx+c,当x=-1时取极大值7;当x=3时取得极小值,求这个极小值及a、b、c的值。练习:已知函数f(x)=x3+ax2+bx+a2在x=1处有极值为 10,求a、b的值.1、可导函数的极值点概念及与导数的关系。 2、求极值的方法步骤。 3、极值与最值的联系与区别。 4、求最值的方法步骤。 5、注意:不可导函数也可能有极值点.例如函数y=|x|,它在点x=0处不可导,但x=0是函数的极小值点.故函数f(x)在极值点处不一定存在导数. 作业:课本30页B1、2、4 谢谢!