预览加载中,请您耐心等待几秒...
1/8
2/8
3/8
4/8
5/8
6/8
7/8
8/8

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

八种求数列通项公式的方法 一、公式法 例1已知数列满足,,求数列的通项公式。 解:两边除以,得,则,故数列是以为首项,以为公差的等差数列,由等差数列的通项公式,得,所以数列的通项公式为。 评注:本题解题的关键是把递推关系式转化为,说明数列是等差数列,再直接利用等差数列的通项公式求出,进而求出数列的通项公式。 二、累加法 例2已知数列满足,求数列的通项公式。 解:由得则 所以数列的通项公式为。 评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式。 例3已知数列满足,求数列的通项公式。 解:由得则 所以 评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式。 已知数列满足,求数列的通项公式。 解:两边除以,得, 则,故 因此, 则 评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式,最后再求数列的通项公式。 三、累乘法 例5已知数列满足,求数列的通项公式。 解:因为,所以,则,故 所以数列的通项公式为 评注:本题解题的关键是把递推关系转化为,进而求出,即得数列的通项公式。 例6已知数列满足,求的通项公式。 解:因为 ① 所以 ② 用②式-①式得 则 故 所以 ③ 由,,则,又知,则,代入③得。 所以,的通项公式为 评注:本题解题的关键是把递推关系式转化为,进而求出,从而可得当的表达式,最后再求出数列的通项公式。 四、待定系数法 例7已知数列满足,求数列的通项公式。 解:设 ④ 将代入④式,得,等式两边消去,得,两边除以,得代入④式得 ⑤ 由及⑤式得,则,则数列是以为首项,以2为公比的等比数列,则,故。 评注:本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。 例8已知数列满足,求数列的通项公式。 解:设 ⑥ 将代入⑥式,得 整理得。 令,则,代入⑥式得 ⑦ 由及⑦式, 得,则, 故数列是以为首项,以3为公比的等比数列,因此,则。 评注:本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求数列的通项公式。 例9已知数列满足,求数列的通项公式。 解:设⑧ 将代入⑧式,得 ,则 等式两边消去,得, 解方程组,则,代入⑧式,得 ⑨ 由及⑨式,得 则,故数列为以为首项,以2为公比的等比数列,因此,则。 评注:本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。 五、对数变换法 例10已知数列满足,,求数列的通项公式。 解:因为,所以。在式两边取常用对数得 ⑩ 设 eq\o\ac(○,11) 将⑩式代入eq\o\ac(○,11)式,得,两边消去并整理,得,则 ,故 代入eq\o\ac(○,11)式,得eq\o\ac(○,12) 由及eq\o\ac(○,12)式, 得, 则, 所以数列是以为首项,以5为公比的等比数列,则,因此 则。 评注:本题解题的关键是通过对数变换把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。 六、迭代法 例11已知数列满足,求数列的通项公式。 解:因为,所以 又,所以数列的通项公式为。 评注:本题还可综合利用累乘法和对数变换法求数列的通项公式。即先将等式两边取常用对数得,即,再由累乘法可推知,从而。 七、数学归纳法 例12已知数列满足,求数列的通项公式。 解:由及,得 由此可猜测,往下用数学归纳法证明这个结论。 (1)当时,,所以等式成立。 (2)假设当时等式成立,即,则当时, 由此可知,当时等式也成立。 根据(1),(2)可知,等式对任何都成立。 评注:本题解题的关键是通过首项和递推关系式先求出数列的前n项,进而猜出数列的通项公式,最后再用数学归纳法加以证明。 八、换元法 例13已知数列满足,求数列的通项公式。 解:令,则 故,代入得 即 因为,故 则,即, 可化为, 所以是以为首项,以为公比的等比数列,因此,则,即,得 。 评注:本题解题的关键是通过将的换元为,使得所给递推关系式转化形式,从而可知数列为等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。