预览加载中,请您耐心等待几秒...
1/6
2/6
3/6
4/6
5/6
6/6

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第19卷第4期中国地质灾害与防治学报V01.19No.4 2008年12月TheChineseJournalofGeologicalHazardandControlDel2.2008 滑坡发育阶段判定的改进可拓层次分析方法 王念秦,罗东海 (西安科技大学地质与环境工程系,陕西西安710054) 摘要:由于滑坡自身的复杂性和模型方法的适用性等原因,滑坡发生时1'4的预测预报仍是滑坡学领域的难题之一。 本文基于可拓层次分析法原理,建立了滑坡发育阶段判定的物元模型和可拓层次分析法模型。该方法不但具备层次 分析法的系统性、层次性和简洁性优点,而且具备可拓学的考虑人类思维模糊性等优点,同时避免了层次分析法中为 满足对比矩阵一致性而进行的大量试算,采用基于可能度区间判断矩阵排序法更加符合实际。通过秦安县魏店乡刘 萍组北山滑坡实例计算验证,可拓层次分析法能够较好地反映滑坡发育的演变阶段,可进行滑坡中短期时间预报。 关键词:滑坡时间预报;可拓层次分析法;可拓对比矩阵;模型;隶属度;信息集中;甘肃省秦安县北山滑坡 文章编号:1003—8035(2008)04—0027—06中图分类号:P642.2文献标识码:A 阵满足一致性要求。且构建对比矩阵时又没有考虑 1引言 人类思维模糊性n。而引入可拓学方法能够很好地 滑坡时间预报方法很多。传统的安全系数预测解决层次分析法的这一不足。可拓学是以蔡文研究 法属于确定性分析法,如极限平衡理论中的瑞典员为首的中国学者创立的新学科,目前已形成初 法⋯、毕肖普法、简布法。和斯宾塞法等;模糊综步的理论框架,正逐步应用于各个领域中。 合评判法,利用概率论的可靠度分析方法“等属可拓层次分析法的基本步骤包括:(1)建立可拓 于不确定性分析方法。而滑坡时间预报本身是确定层次分析模型;(2)构造可拓对比矩阵;(3)求对比矩 性和不确定性的综合问题。为此,有人提出多参数预阵最大特征根和特征向量;(4)求层次单排序;(5)求 报法、信息模型法。,试图寻求最佳因素组合的方层次总排序。 法。然而,由于滑坡影响因素的复杂性和多样性,加 3滑坡时间预报的可行性 之各种方法本身尚不完善,因此,滑坡时间预报至今 仍然是滑坡学领域的难题之一。鉴于此,有必要进一滑坡同其他一切客观事物一样,有其孕育、发生、 步探讨滑坡时间预报方法。本文采用可拓层次分析发展和消亡的演化过程,而且每一过程中发生在滑坡 方法,从影响滑坡发生的单指标评价到多指标综合评体及其周围的宏观迹象,如地表变形、地物变形、地下 价,引入可拓学“节域。’理论,在层次分析结果下,水异常、地声、地气、动物异常等都有明显的不同,认 最终得出滑坡时间预报结果的综合评语,从而判断滑真观察、分析、把握滑坡发育各阶段的宏观迹象,是可 坡演化阶段,进行滑坡发生时间的中短期预报。实例以做好中、短期预报的。 验算证明,该方法是一种可行的判断滑坡发育阶段的但滑坡预报是一项复杂的系统工程问题。影响 方法。因素复杂,各种宏观迹象与滑坡发育阶段的密切程度 也不尽相同,其相互间又存在着一定的关联。而作为 2可拓层次分析法简介 刻画宏观迹象级别的界线,是语言性描述,是模糊的, 层次分析法简称AHP,是20世纪70年代美国因此,很难用经典数学模型加以统一量度,也很难将 运筹学家T·L·Satty提出的一种定性与定量分析相结复杂的各种宏观迹象综合成一个元素来进行评判。 合的多目标决策分析方法论。它吸收利用行为科学 的特点,将决策者的经验判断给予量化,是一种系统收稿日期:2007—11-21;修回日期:2008—0l—O9 分析方法。目前已被广泛应用于许多领域。但是,传作者简介:王念秦(1964一),男,河南盂津人,教授、硕士生导 统的层次分析方法计算量大,特别是在对比矩阵无法师,工学博士,从事地质灾害、岩土体稳定方面的教 学与研究工作。 满足一致性检验时,需要大量的试算工作直至对比矩 中国地质灾害与防治学报 28ZH0NGGU0DIzHIZAIHAlYUFANGZHIXUEBAO2008正 采用可拓学的“菱形思维”方式,可以将多指标综合成滑坡宏观迹象参数在滑坡演变各个阶段的定性描述, 一个指标评语,从而判定滑坡发育阶段。表1给出了并对这些非连续变化的定性指标进行离散化取值。 表1滑坡演变阶段单因素评判指标 Table1Single~ctorevaluationindicatorsofthelandslidedevelopmentstage R=(Ⅳ,,c,)(1) 4构造滑坡时间预报模型 式中:C∈Bf,i=1,2,3⋯n;_『=1,2,3⋯n;P=1,2,3 4.1物元模型⋯n 基于可拓学原理¨,将滑坡所处的阶段视为物4.2经典域和节域 元R,滑坡视为Ⅳ,滑坡的宏观特征视为B,子特征根据滑坡特