预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共17页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

㄀㄀㄀5ゴゴゴ᭄ᄫ෎ᏺӴ䕧㋏㒳5.1ᓩ㿔ᓩ㿔ᓩ㿔 ᭄ᄫ෎ᏺֵো5.2 5.1ᓩ㿔ǂǂǂ 5.2.1Ѡܗⷕ ᭄ᄫ෎ᏺֵো5.2 ˖˖˖˖᭄ᄫ෎ᏺֵোⱘࡳ⥛䈅ᆚᑺǂǂǂᐌ㾕᭄ᄫ෎ᏺֵো㉏ൟᐌ㾕᭄ᄫ෎ᏺֵো㉏ൟ5.3 5.4᮴ⷕ䯈ᑆᡄⱘ᭄ᄫ෎ᏺ㋏㒳 ⶽᔶ㛝ކ 5.5䚼ߚડᑨ㋏㒳 ϝ㾦⊶ 5.6᭄ᄫ෎ᏺӴ䕧㋏㒳ⱘᡫాໄᗻ㛑ǂǂǂ 5.7ⴐⴐⴐ೒೒೒催ᮃ㛝ކ 5.8ᯊඳഛ㸵 छԭᓺ㛝ކ ᭄ᄫֵোⱘᡄхϢ㾷ᡄ5.9 1.ऩᵕᗻϡᔦ䳊⊶ᔶऩᵕᗻϡᔦ䳊⊶ᔶǂ3.ऩᵕᗻᔦ䳊⊶ᔶ 10100111010011 ˇE ˇE 0 0 2.ঠᵕᗻϡᔦ䳊⊶ᔶ4.ঠᵕᗻᔦ䳊⊶ᔶঠᵕᗻᔦ䳊⊶ᔶǂǂǂǂ 10100111010011 ˇEˇE ˉEˉE −− g1(tnTs)s(t)g2(tnTs) 5.Ꮒߚ⊶ᔶ t 1010011−− 2TsTs0Ts2Ts ˇE ∞ s(t)=ag(t−nT) ˉE∑ns n=−∞ g(t−nT)㸼⼎ヺোĀ0ā g(t−nT)=1s s− 6.໮⬉ᑇ⊶ᔶǂǂǂg2(tnTs)㸼⼎ヺোĀ1ā ेˈ⼎ϟˈ᭄ᄫ෎ᏺֵোৃ⫼䱣ᴎᑣ߫㸼މϔ㠀ᚙ 0000 +3E 010101 +∞ E10 −= E1111s(t)∑sn(t) −3En=−∞ 1 −− g1(tnTs)s(t)g2(tnTs) 〇ᗕ⊶˖ᰃ䱣ᴎᑣ߫s(t)ⱘ㒳䅵ᑇഛߚ䞣ˈᅗপއѢ↣ t ݙߎ⦄g1(t)ǃg2(t)ⱘὖ⥛ࡴᴗᑇഛDŽܗϾⷕ−− 2TsTs0Ts2Ts ∞∞ =−+−− =v(t)∑[Pg1(tnTs)1(P)g2(tnTs)] s(t)∑sn(t)5.3᭄ᄫ෎ᏺֵোⱘࡳ⥛䈅ᆚᑺ n=−∞ n=−∞ =−+−− g(t−nT)ҹὖ⥛Pߎ⦄vn(t)Pg1(tnTs)1(P)g2(tnTs) s(t)=1s n−− g2(tnTs)ҹὖ⥛1(P)ߎ⦄ Ѹব⊶˖=− ∞u(t)s(t)v(t) =+= s(t)v(t)u(t)v(t)∑vn(t)=− n=−∞un(t)sn(t)vn(t) 〇Ѹ∞ ᗕব= u(t)∑un(t) ⊶⊶n=−∞ g(t−nT)ҹὖ⥛Pߎ⦄ =1s1ǃ〇ᗕ⊶ⱘࡳ⥛䈅Pv(f) sn(t) g(t−nT)ҹὖ⥛1(−P)ߎ⦄∞ 2s=−+−− v(t)∑[Pg1(tnTs)1(P)g2(tnTs)] v(t)=Pg(t−nT)+1(−P)g(t−nT)n=−∞ n1s2s=+ v(t)v(tTs) 〇ᗕ⊶ᰃϔϾ਼ᳳЎTsⱘ਼ᳳֵোDŽ−= un(t)snt)(vn(t) ∞ −−−−ҹὖ⥛j2πmft 1(P)[g1(tnTs)g2(tnTs)]P=s =vt)(∑Cme −−−−−m=−∞ P[g1(tnTs)g2(tnTs)]ҹὖ⥛1(P) T2/ =−−−1s−jm2πft an[g1(tnTs)g2(tnTs)]=s Cmv(t)edt ∫−T2/ Tss Ts2/−π 1(−P)ҹὖ⥛P=f[Pg(t)+1(−P)g(t)]ejm2fstdt =s∫−12 aTs2/ n−− Pҹὖ⥛1(P)=[]ω+−ω fsPG1(ms)1(P)G2(ms) ∞ j2πmft1 v(t)=Cesδ(ω)=δ2(πf)=δ(f)P(f) ∑mπ2ǃѸব⊶ⱘࡳ⥛䈅u m=−∞2 E[U(f)2 =[+−]=T CmfsPG1(mfs)1(P)G2(mfs)Pu(f)lim N→∞+ 2(N)1TS ∞−π G(mf)=g(t)ej2mfsdt=+↔ 1s∫−∞1T2(N)1TsuT(t)UT(f) ∞ −πNN =j2mfs G2(mfs)g2(t)edt==−−− ∫−∞uT(t)∑un(t)∑an[g1(tnTs)g2(tnTs)] n=−Nn=−N ∞ 2j2πmft∞ =s−j2πft R(t)∑Cme= UT(f)uTt)(edt m=−∞∫−∞ ∞N∞ =[]+−2δ−=a[g(t−nT)−g(t−nT)]e−j2πftdt Pv(f)∑fsPG1(mfs)1(P)G2(mfs)(fmfs)∑n∫−∞1S2S m=−∞n=−N ∞N 2−π P(ω)=2πf[]PG(mω)+1(−P)G(mω)δ(ω−mω)=j2fnTs− v∑s1s2ss∑ane[G1(f)G2(f)] m=−∞n=−N 2 2 E[U(f)P(f) =T3ǃs(t)ⱘࡳ⥛䈅s Pu(f)lim N→∞+ 2(N)1TS =+ Ps(f)Pv(f)Pu(f) N −j2πfnT∞ =s−2 UT(f)∑ane[G1(f)G2(f)]=[]+−δ− ∑fsPG1(mfs)1(P)G2(mfs)(fmfs) n=−N m=−∞ +−−2 ∞fsP1(P)G1(f)G2(f) G(f