基于表面肌电信号的手势识别方法、系统及设备.pdf
猫巷****志敏
亲,该文档总共16页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
基于表面肌电信号的手势识别方法、系统及设备.pdf
本发明提供一种基于表面肌电信号的手势识别方法、系统及设备,方法包括:在服务器中初始化模型,建立联合模型;客户端采集本地数据;服务器向客户端广播联合模型;客户端使用其本地数据在客户端训练联合模型,形成客户端模型;将客户端模型的参数矩阵上传服务器;服务器基于参数矩阵获得新联合模型的参数矩阵;达到预设的更新轮次后,得到最终联合模型。本方案在数据稀缺的情况下能有效减少跨域带来的影响,将多个拥有小型数据集的客户端结合,在保护数据隐私的前提下训练具有较强泛化能力的联合模型,当遇到新数据时,通过在联合模型上进行参数微调
基于多通道表面肌电信号的手势识别方法研究.docx
基于多通道表面肌电信号的手势识别方法研究摘要:手势识别是人机交互中的重要问题之一。在本文中,我们提出了一种基于多通道表面肌电信号的手势识别方法。该方法可以通过采集肌肉表面电信号,识别用户手势,从而实现对机器的控制。该方法采用了多通道信号的特征提取方法,以提高分类器的准确率。同时,我们使用了多种分类器进行实验,针对实验结果进行分析和对比,找到了最适合该方法的分类器,从而提高了手势识别的准确度。关键词:手势识别,表面肌电信号,多通道信号,特征提取,分类器Abstract:Gesturerecognitioni
基于多通道表面肌电信号的连续手势动作识别方法.pdf
本发明公开了基于多通道表面肌电信号的连续手势动作识别方法,属于手势动作识别领域,涉及人机交互技术,本发明通过将从sEMG获得的小臂肌电信号,与从九轴陀螺仪实时获取臂环的空间运动信息进行多模态融合,完成了整个前臂的运动信息的捕捉,兼顾手部细节动作与手臂大幅动作。通过运用ICA算法,解决了不同通道之间信号混合互相干扰的问题,从而进一步降低了模型的训练难度,降低了对训练数据集的规模要求。通过应用成熟的单目视觉技术,实现了对连续变化手势的自动化打标,其成本和实施难度都比传统方式大大降低。利用用户本人的sEMG数据
基于动态阈值和EasyTL的跨个体表面肌电信号手势识别方法.pdf
基于动态阈值和EasyTL的跨个体表面肌电信号手势识别方法,属于康复治疗领域,为了解决现有的识别方法在模型选择和参数调节时,存在耗时长以及识别效率低的问题。本发明针对样本个体采集的原始表面肌电信号进行滤波和活动段识别后,进行特征值提取,构建源域;以源域为基础,引入概率矩阵和中心距离构建损失函数,通过线性规划方法求出解迁移学习分类器;对待识别个体的原始表面肌电信号依次进行采集、滤波和活动段识别后,进行特征值提取,生成目标域;将目标域与源域进行域内对齐后输入迁移学习分类器,完成对待识别个体的手势动作的识别。有
基于卷积神经网络的表面肌电信号手势识别.pptx
基于卷积神经网络的表面肌电信号手势识别目录添加目录项标题表面肌电信号手势识别概述表面肌电信号手势识别的原理表面肌电信号手势识别的应用场景表面肌电信号手势识别的研究现状卷积神经网络在表面肌电信号手势识别中的应用卷积神经网络的基本原理卷积神经网络在表面肌电信号手势识别中的优势卷积神经网络在表面肌电信号手势识别中的实现方法基于卷积神经网络的表面肌电信号手势识别实验设计数据采集和处理方法模型训练和评估指标实验结果分析基于卷积神经网络的表面肌电信号手势识别研究展望改进模型结构以提高识别准确率探索新的数据增强方法以增