预览加载中,请您耐心等待几秒...
1/4
2/4
3/4
4/4

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

相交线与平行线复习 1、在平面内,不重合的两条直线的位置关系只有两种:相交与平行。 2、互为邻补角: (1)定义:如果两个角有一条公共边且有一个公共顶点,它们的另一边互为反向延长线,具有这种关系的两个角互为邻补角。 ° (2)性质:从位置看:互为邻角;从数量看:互为补角; 3、互为对顶角: (1)定义:如果两个角有有一个公共顶点且它们的两边互为反向延长线,具有这种关系的两个角互为对顶角。 (2)性质:对顶角相等 4、垂直: (1)定义:垂直是相交的一种特殊情形。当两条直线相交所形成的四个角中有一个角是直角,那么这两条直线互相垂直。它们交点叫做垂足。其中的一条直线叫做另一条直线的垂线。 (2)性质:过一点有且只有一条直线和已知直线垂直。 (3)表示方法:用符号“⊥”表示垂直。 5、任何一个“定义”既可以做判定,又可以做性质。 6、垂线是一条直线,垂线段是垂线的一部分。 7、垂线段的性质:连接直线外一点与直线上各点的所有线段中,垂线段最短(简单说成:垂线段最短)。 8、区分:点到直线的距离:直线外一点到这条直线的垂线段的长度。 两点间的距离:连接两点间的线段的长度。 “两点间的距离”和“点到直线的距离”是两个不同的概念,但是“点到直线的距离”是“两点间的距离”的一种特殊情况。 9、内错角的定义:两个角都在截线的两侧,都在被截直线之间。这样的两个角叫做内错角。 10、同位角的定义:两个角都在截线的同侧,都在被截直线的同一方。这样的两个角叫做同位角。 11、同旁内角的定义:两个角都在截线的同侧,都在被截直线之间。这样的两个角叫做同旁内角。 12、截线与被截直线的定义:截线就是截断两条同一方向直线的直线,被截直线就是被截线所截断的两条同一方向的直线。 13、相交线的定义:在平面内有一个公共交点的两条直线,叫做相交线。 14、平行线: (1)定义:在平面内不相交的两条直线,叫做平行线。 (2)表示方法:用符号“∥”表示平行。 (3)公理:经过直线外一点,有且只有一条直线与已知直线平行(这个公理说明了平行线的存在性和唯一性)。 (4)推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。 (5)判定1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线互相平行(简单说成:同位角相等,两直线平行)。 判定2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线互相平行(简单说成:内错角相等,两直线平行)。 判定3:两条直线被第三条直线所截,如果同旁内角相等,那么这两条直线互相平行(简单说成:同旁内角相等,两直线平行)。 判定4:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线互相平行。 (6)性质1:如果两条平行直线被第三条直线所截,那么同位角相等(简单说成:两直线平行,同位角相等)。 性质2:如果两条平行直线被第三条直线所截,那么内错角相等(简单说成:两直线平行,内错角相等)。 性质3:如果两条平行直线被第三条直线所截,那么同旁内角相等(简单说成:两直线平行,同旁内角相等)。 15、命题 (1)定义:表示判断一件事情的语句,叫做命题。 (2)分类:命题分为真命题:正确的命题。假命题:错误的命题。 (3)组成:命题是由条件(题设)和结论两部分组成。条件(题设)是已知事项,结论是由已知事项推出的事项。 (4)定理:通过推理证实过的真命题叫做定理。定理也可以作为继续推理的依据。 16、平移: (1)定义:在平面内将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移变换,简称平移。 (2)性质1:平移不改变图形的形状和大小,只改变图形的位置。 性质2:经过平移对应点所连的线段平行且相等,对应线段平行且相等,对应角相等。 (3)作图步骤: 1、按照题目要求,确定平移方向和距离; 2、找出所作图形的关键点,例如顶点; 3、沿确定的方向和距离平移所有关键点; 4、联结平移后的关键点并标出对应字母。 练习: 1、如图点E在AC延长线上,下列条件中能判断AB∥CD的是() A、∠3=∠4B、∠1=∠2C、∠D=∠DCED、∠D+∠ACD=1800 2、如图a∥b,∠3=1080,则∠1的度数是() A、720B、800C、820D、1080 3、下列说法正确的是() A、a、b、c是直线,且a∥b,b∥c,则a∥c B、a、b、c是直线,且a⊥b,b⊥c,则a⊥c C、a、b、c是直线,且a∥b,b⊥c则a∥c D、a、b、c是直线,且a∥b,b∥c,则a⊥c 4、下列命题中,错误的是() A、邻补角是互补的角B、互补的角若相等,则此两角是直角 C、两个锐角的和是锐角D、一个角的两个邻补角是对顶角吗? 5、如图AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF=() A、1800B、2700C、3600D、540