预览加载中,请您耐心等待几秒...
1/4
2/4
3/4
4/4

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

霍山二中七年级(下)数学期中试卷 时间:90分钟满分:120分 命题:霍山二中刘瑞 一、细心选一选(本题共10小题,每小题3分,共30分) 序号12345678910答案BDDCBACCDA1、下列运算正确的是() A.B.C.D. 2、下列各数中,无理数的个数是() 3.1415926,,,,,,0.1818818881……(两个1之间依次多1个8) A.1个B.2个C.3个D.4个 3、-8的立方根与4的平方根的和是() A、0B、0或4C、4D、0或-4 4、已知、b、c为实数,若,C≠0,则下列结论不一定正确的是() A.B.C.D. 5、下列说法不正确的是() A.-5是25的平方根B.1的平方根与立方根相同 C.(-5)2的算术平方根是5D.-8的立方根是-2 6、下列计算正确的是() A.B. C.D. 7.在数轴上表示不等式x≥-2的解集,正确的是() 8.若a>0,且ax=2,ay=3,则的值为() A、-1B、1C、D、 9、已知加上一个单项式后能成为一个整式的完全平方,给出下面五个单项式eq\o\ac(○,1),eq\o\ac(○,2),eq\o\ac(○,3),eq\o\ac(○,4),eq\o\ac(○,5)-1其中,正确的个数共有() A.1个B.2个C.3个D.4个 10.从边长为a的正方形内去掉一个边长为b的小正方形(如图)然后将剩余部分剪拼成一个长方形,上述操作所能验证的等式() A、a2-b2=(a+b)(a-b) B、(a-b)2=a2-2ab+b2 C、(a+b)2=a2+2ab+b2 D、a2+ab=a(a+b) 二、耐心填一填(本题本5小题,每小题4分,共20分) 11、已知,,则2 12、如果不等式3x-m≤0的正整数解是1、2、3,则m的取值范围是9≤m<12 13、定义运算,下面给出了关于这种运算的四个结论: eq\o\ac(○,1)2eq\o\ac(○,×)(-2)=0eq\o\ac(○,2)eq\o\ac(○,3)若,则eq\o\ac(○,4),其中正确结论的序号是eq\o\ac(○,1)eq\o\ac(○,4)(填上你认为所有正确结论的序号) 14.若a2-ma+64是完全平方式,则m=___±16___________ 15.已知一组按规律排列的分式:,,……,其中第6个式子是,第个式子是 三、计算(本题共2小题,每小题5分,共10分) 16、 解:原式=3+(-1)×1-3+4 =3-1-3+4 =3 17、分解因式: 18、阅读下列材料,并解答相应问题: 对于二次三项式x2+2ax+a2这样的完全平方式,可以用公式法将它分解成(x+a)2的形式,但是对于二次三项式x2+2ax-3a2,就不能直接应用完全平方公式了,我们可以在二次三项式x2+2ax-3a2中先加上一项a2,使其成为完全平方式,再减去a2这项,使整个式子的值不变,于是有: x2+2ax-3a2=x2+2ax+a2-a2-3a2 =(x+a)2-(2a)2 =(x+3a)(x-a) 请用上述介绍的方法把m2-6m+8因式分解。 六、解答(共20分) 19、求不等式的所有自然数解 20、、已知(a+b)2=11,(a-b)2=7,求a2+b2和ab的值。 解:∵(a+b)2=a2+b2+2ab=11(a-b)2=a2+b2-2ab=7 ∴2(a2+b2)=18∴a2+b2=9 ∴9+2ab=11∴ab=1 七、(本题共两大题,每小题10分,共20分) 21、已知关于的方程组的解满足不等式,求实数的取值范围。 eq\o\ac(○,2) eq\o\ac(○,1) 解 22、我国出租车的收费标准因城市而异,A市为起步价10元,3千米后为每千米1.3元,B市为起步价8元,3千米后为每千米1.5元,试问在A、B两地乘坐出租车x千米,哪个城市的出租车费用便宜? 、解:当0<x≤3时,B市的出租车费用便宜。 当x>3时:A市的出租车费用:10+1.3(x-3)元 B市的出租车费用:8+1.5(x-3)元 当:10+1.3(x-3)>8+1.5(x-3)时,得:x<13 10+1.3(x-3)=8+1.5(x-3)时,得:x=13 10+1.3(x-3)<8+1.5(x-3)时,得:x>13 综上所得:当0<x<13时,B市的出租车费用便宜。 当x=13时,A、B市的出租车费用一样。 当x>13时,A市的出租车费用便宜。 八、(本题10分) 23、有足够多的长方形和正方形卡片如下图 (1)如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙).请画出