预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共20页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2.5平面向量应用举例1.平面几何中的向量方法例1:平行四边形是表示向量加法与减法的几何模型。如图,你能发现平行四边形对角线的长度与两条邻边长度之间的关系吗?A你能总结一下利用向量法解决平面几何问题的基本思路吗?例2.如图,ABCD中,点E、F分别是AD、DC边的中点,BE、BF分别与AC交于R、T两点,你能发现AR、RT、TC之间的关系吗?解:设则不共线,情景1:两人一起提一个重物时,怎样提它最省力?例3.在日常生活中,你是否有这样的经验:两个人共提一个旅行包,夹角越大越费力;在单杠上做引体向上运动,两臂的夹角越小越省力,你能从数学的角度解释这种现象吗?解:不妨设,由向量的平行四边形法则,力的平衡以及直角三角形的知识,(1)θ为何值时,最小,最小值是多少?生活中常遇到两根等长的绳子挂一个物体.绳子的最大拉力为,物体重量为,分析绳子受到的拉力大小F1与两绳子间的夹角θ的关系?探究三例4.如图,一条河的两岸平行,河的宽度d=500m,一艘船从A处出发到河对岸,已知船的速度 ,水流速度问行驶航程最短时,所用时间是多少?(精确到0.1min)A(2)行驶时间最短时,所用的时间是多少?答:行驶的时间最短时,所用的时间是3minM