预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

对于平面应力和平面应变问题,若讨论的物体截面形状及侧面受力相同,则它们所需满足的基本方程和边界条件也相同,所得到的解和应力函数均相同。 因此,它们的应力分量x,y和xy也相同,应力分量xz和yz均等于零,所不同的是z向应力分量z,应变z和位移分量w。 下表列出了两种平面问题的主要差别。 平面应变问题平面应力问题z向应力分量z=(x+y)z=0z向位移分量w=0w≠0正应变分量上述分析表明,平面应力和平面应变问题的主要不同在于z向应变,位移和正应力的计算公式。 返回 虽然平面应力和平面应变问题的主要不同在于z向应变,位移和正应力的计算公式。但是应该注意的问题是平面应力问题解的近似性。 由于讨论平面应力问题时,仅用了一个变形协调方程,其余五个方程未做检验。这五个方程对于平面应变问题来讲是完全满足的,而对于平面应力问题,变形协调方程除了第四,五两式自动满足外,第二,三,六式还要求 这要求ez为x,y的线性函数,因此ez=ax+by+c,但平面应力问题又要求。这要求sx+sy满足线性分布。这只有均匀应力分布,例如单向、双向拉伸,纯弯曲和纯剪切等可以满足。这将使求解受到极大的限制,通过双调和方程和边界条件得到的弹性力学解,一般是不可能满足此条件的。 由于平面应力问题ez≠0,这使得问题的求解困难相对。为了简化分析,对于薄板问题,ez很小,可以认为ez近似为零。这样平面应力问题也可以像平面应变问题一样求解。 对于这样的假设,将不可避免产生误差,下面将讨论其误差。 假如重新假定应力分量sx,sy,txy是x,y,z的函数,应力分量sz,txz和tyz仍然等于零,则可以选取新的应力函数 求解平面应力问题。如果上式中函数(x,y)为双调和函数,则应力函数Y(x,y,z)完全满足平衡微分方程和六个变形协调方程。 显然,新的应力函数Y(x,y,z)与平面应力问题近似解应力函数的主要差别在于补充项的影响。 根据上述分析,可以对平面应力简化解的误差做量级上的分析。由于平面应力问题讨论的板厚很小,补充项含有z的平方项,因此补充项对应力计算的贡献就是一个z的平方项。 对于薄板问题,一般来讲,此项影响很小,因此可以忽略不计。