预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

教学中如何培养学生的思维能力 我们要培养社会主义现代化建设所需要的人才,其基本条件之一就是要具有独立思考的能力,勇于创新的精神。小学数学教学从一年级起就担负着培养学生思维能力的重要任务。因此数学教学的思维训练,应根据小学生的思维特点,结合教学内容和生活实际把思维训练贯穿于课堂教学的各个方面。 一、激发学生的思维动机 教师如何才能激发学生思维动机呢?这就要求教师必须在教学中充分发挥主导作用,根据学生思维特点,有意识地挖掘教材中的知识因素,从学生自身生活需要出发,使其明确知识的价值和意义,从而产生思维的动机。例如:在教学根据实际情况用“进一法”和“去尾法”取商的近似数的应用题时,先出示题目:小强的妈妈要将2.5千克香油分装在一些玻璃瓶里,每个瓶最多可盛0.4千克,需要几个瓶?再让学生读题,分析解题思路。当学生回答出求需要准备几个瓶,就是看2.5千克里有几个0.4千克时,我先让学生猜一猜需要几个瓶,然后让学生独立计算出结果。算出结果为6.25,学生问:“按‘四舍无入’法我们准备6个瓶子可以吗?”我回答说“不可以。”学生又问:“为什么?”这时候我们要告诉他们需要再准备一个瓶子装剩下的0.1千克油,所以需要准备7个瓶子才行。最后让学生验证自己的猜想,这时候可以总结:这种根据实际情况取近似数的方法叫“进一法”。随后用同样的方法教学了“去尾法”。由于这些例题都是生活中遇到的问题,学生容易理解掌握。这样也引发了学生探求新知的思维动机。这样设计教学既渗透了“知识来源于生活”的数学思想,又使学生意识到学习知识的目的是为了解决生活和生产中的实际问题。学生的学习动机被激发起来了,自然会全身心地投入到后面的教学活动之中。二、理清学生的思维脉络理清学生的思维脉络,才能更好的指导学生的思维和学习,这方面的教学,我认为应该注意一下几点: 1、引导学生抓住思维的起始点。数学知识的脉络是前后衔接、环环紧扣的,前后贯通,并总是按照发生——发展——延伸的自然规律构成每个单元的知识体系。学生获得知识的思维过程也是如此,或从已有的经验开始,或从旧知识引入,这就是思维的开端。从学生思维的起始点入手,把握住思维发展的各个层次逐步深入直至终结。如果这个开端不符合学生的知识水平或思维特点,学生就会感到问题的解决无从下手,其思维脉络就不会在有序的轨道上发展。例如:在教学新教材第九册的连除应用题时,首先将连除应用题拆分成两道与生活有关的除法应用题,让学生分析数量关系,并列式计算。再出示连除应用题,通过学生读题、理解题意、分析数量关系,学生明白这题与上面两道题不同,然后我启发提问:“能不能一步算出每头牛一天产奶多少千克吗?”学生都回答说:“不能。”接着我又提问学生:“既然这道题不能一步算出来,那么应该先算什么,后算什么?”然后让学生分小组讨论解决的方法解答。交流汇报时,有的小组说出了两种算法,甚至有个别小组说出了三种以上的方法。这样从问题入手逐步深化认识,不但能够解决学生思维过程中无从下手的问题,而且有利于使学生的思维沿着起点发展,培养其思维的流畅性。当然,不同知识、不同学生的思维起点不尽相同,但不管起点如何,作为数学教学中的思维训练必须从思维的“发生点”上起步,以旧知识为依托,并通过“迁移”、“转化”,使学生的思维流程清晰化、条理化、逻辑化。2、.引导学生抓住思维的转折点。学生的思维有时会出现“卡壳”的现象,这就是思维的障碍点。此时教学应适时地加以疏导、点拨,促使学生思维转折,并以此为契机促进学生思维发展。抓住转折点,有利于克服学生的思维障碍,有利发散思维的培养。另外设计好练习题对于培养学生思维能力起着重要的促进作用。培养学生的思维能力同学习计算方法、掌握解题方法一样,也必须通过练习。而且思维与解题过程是密切联系着的。培养思维能力的最有效办法是通过解题的练习来实现。因此设计好练习题就成为能否促进学生思维能力发展的重要一环。一般地说,课本中都安排了一定数量的有助于发展学生思维能力的练习题。但是不一定都能满足教学的需要,而且由于班级的情况不同,课本中的练习题也很难做到完全适应各种情况的需要。因此教学时我经常根据班里具体情况及培养目标针对性地设计一些练习题。通过练习,学生的思维能力得到了进一步提高。 三、在教学中,要有意识的培养学生的逆向思维方法的运用,有些题目按照正常的思维顺序有时候很难找到解决问题的路径。例如:①:学生理解了“9比6多3”的算理后,要让学生反过来想到“6比9少3”。 ②:出示“一条公路,修了”条件,可引导学生联想到“剩下几分之几,剩下占已修的几分之几……”。 ③:某粮店有两个仓库,甲仓库存米是乙仓库存米的4倍。当乙仓运出5吨米后,甲仓存米则是乙仓的6倍,甲、乙两仓原来各有米多少吨?学生习惯于顺着题意从倍数角度思考:5÷(6-4)=2.5(吨)(乙仓);2.5×4=10