预览加载中,请您耐心等待几秒...
1/5
2/5
3/5
4/5
5/5

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

、弹簧的刚度 圆柱弹簧受载后的轴向变形量式中n为弹簧的有效圈数;G为弹簧的切变模量。这样弹簧的圈数及刚度分别为对于拉伸弹簧,n>20时,一般圆整为整圈数,n<20时,可圆整为1/2圈;对于压缩弹簧总圈数n的尾数宜取1/4、1/2或整圈数,常用1/2圈。为了保证弹簧具有稳定的性能,通常弹簧的有效圈数最少为2圈。C值大小对弹簧刚度影响很大。若其它条件相同时,C值愈小的弹簧,刚度愈大,弹簧也就愈硬;反之则愈软。不过,C值愈小的弹簧卷制愈困难,且在工作时会引起较大的切应力。此外,k值还和G、d、n有关,在调整弹簧刚度时,应综合考虑这些因素的影响。2、弹簧的强度从受力分析可见,弹簧受到的应力主要为扭矩和横向力引起的剪应力,对于圆形弹簧丝系数Ks可以理解为切向力作用时对扭应力的修正系数,进一步考虑到弹簧丝曲率的影响,可得到扭应力式中K为曲度系数。它考虑了弹簧丝曲率和切向力对扭应力的影响。一定条件下钢丝直径 1、弹簧的受力图示的压缩弹簧,当弹簧受轴向压力F时,在弹簧丝的任何横剖面上将作用着:扭矩T=FRcosα,弯矩M=FRsinα,切向力FQ=Fcosα和法向力NF=Fsinα(式中R为弹簧的平均半径)。由于弹簧螺旋角α的值不大(对于压缩弹簧为6~90),所以弯矩M和法向力N可以忽略不计。因此,在弹簧丝中起主要作用的外力将是扭矩T和切向力Q。α的值较小时,cosα≈1,可取T=FR和Q=F。这种简化对于计算的准确性影响不大。当拉伸弹簧受轴向拉力F时,弹簧丝横剖面上的受力情况和压缩弹簧相同,只是扭矩T和切向力Q均为相反的方向。所以上述两种弹簧的计算方法可以一并讲述。4、稳定性计算压缩弹簧的长度较大时,受载后容易发生图a)所示的失稳现象,所以还应进行稳定性的验算。图a图b图c为了便于制造和避免失稳现象出现,通常建议弹簧的长径比b=H0/D2按下列情况取为:弹簧两端均为回转端时,b≤2.6;弹簧两端均为固定端时,b≤5.3;弹簧两端一端固定而另一端回转时,b≤3.7。如果b大于上述数值时,则必须进行稳定性计算,并限制弹簧载荷F小于失稳时的临界载荷Fcr。一般取F=Fcr/(2~2.5),其中临界载荷可按下式计算:Fcr=CBkH0式中,CB为不稳定系数,由下图查取。如果F>Fcr,应重新选择有关参数,改变b值,提高Fcr的大小,使其大于Fmax之值,以保证弹簧的稳定性。若受结构限制而不能改变参数时,就应该加装图b)、c)所示的导杆或导套,以免弹簧受载时产生侧向弯曲。注:1---两端固定;2---一端固定;3---两端自由转动