预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

中考数学《圆的有关概念及性质》专题复习 【基础知识回顾】 一、圆的定义: 1、⑴形成性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转形成 的图形叫做圆,固定的端点叫线段OA叫做 ⑵描述性定义:圆是到定点的距离等于的点的集合 【名师提醒:1、在一个圆中,圆心决定圆的半径决定圆的 2、直径是圆中的弦,弦不一定是直径】 3、弦与弧: 弦:连接圆上任意两点的叫做弦 弧:圆上任意两点间的叫做弧,弧可分为、、三类 4、圆的对称性: ⑴轴对称性:圆是轴对称图形,有条对称轴的直线都是它的对称轴. ⑵中心对称性:圆是中心对称图形,对称中心是 【名师提醒:圆不仅是中心对称图形,而且具有旋转性,即绕圆心旋转任意角度都被与原 来的图形重合】 5、垂径定理及推论: (1)垂径定理:垂直于弦的直径,并且平分弦所对的 几何语言:∵CD过圆心,且___________ ∴,,. (2)推论: 平分弦()的直径,并且平分弦所对的 几何语言:∵CD过圆心,且___________ ∴,,. 【名师提醒:1、垂径定理及其推论实质是指一条直线满足:⑴过圆心⑵垂直于弦⑶平分弦⑷平分弦所对的 优弧⑸平分弦所对的劣弧五个条件中的两个,那么可推出其中三个,注意解题过程中的灵活运用 2、圆中常作的辅助线是过圆心作弦的线 3、垂径定理常用作计算,在半径r弦a弦心d和弦h中已知两个可求另外两个】 三、圆心角、弧、弦之间的关系: 1、圆心角定义:顶点在的角叫做圆心角 2、定理:在中,两个圆心角、两条弧、两条弦中有一组量它们所对应的其余各组量 也分别 几何语言: ∵在圆O中,_______∵在圆O中,________∵在圆O中,________ ∴,.∴,.∴,. 【名师提醒:注意:该定理的前提条件是“在同圆或等圆中”】 四、圆周角定理及其推论: 1、圆周角定义:顶点在并且两边都和圆的角叫圆周角 2、圆周角定理:在同圆或等圆中,圆弧或等弧所对的圆周角都等于这条弧所对的圆心角的 推论1、在同圆或等圆中,如果两个圆周角那么它们所对的弧 推论2、半圆(或直弦)所对的圆周角是900的圆周角所对的弦是 【名师提醒:1、在圆中,一条弦所对的圆心角只有一个,而它所对的圆周角有个,它们的关系是 2、作直弦所对的圆周角是圆中常作的辅助线】 3、圆内接四边形定义:如果一个多边形的所有顶点都在圆上,这个多边形叫做这个圆叫做 性质:圆内接四边形的对角 【名师提醒:圆内接平行四边形是圆内接梯形是】 考点一:垂径定理 例1、一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离 OC是 A.4B.5C.6D.8 例2、绍兴市著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB 为_________ 考点二:圆心角定理 例3、如图,DC是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是() A.B.AF=BFC.OF=CFD.∠DBC=90° 例4、如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为____________ 对应训练 2.如图,AB是半圆的直径,点D是弧AC的中点,∠ABC=50°,则∠DAB等于(). A.55°B.60°C.65°D.70° 考点三:圆周角定理 例5、如图,将直角三角板60°角的顶点放在圆心O上,斜边和一直角边分别与⊙O相交于A、B两点,P 是优弧AB上任意一点(与A、B不重合),则∠APB=. 例6、如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD等于 _____________ 对应训练 6、△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是() A.80°B.160°C.100°D.80°或100° 7、如图,AB是⊙O的直径,弦CD⊥AB于点N,点M在⊙O上,∠1=∠C (1)求证:CB∥MD; (2)若BC=4,sinM=,求⊙O的直径. 考点四:圆内接四边形的性质 例3如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内 上一点,∠BMO=120°,则⊙C的半径长为() A.6B.5C.3D.3 对应训练 【聚焦中考】 1.如图,AB是的直径,C是上一点,AB=10,AC=6,,垂足为D,则BD的长为 (A)2(B)3(C)4(D)6 2.如图,⊙O的直径AB=12,CD是⊙O的弦,CD⊥AB,垂足为P,且BP:AP=1:5,则CD的长为(). A.B.C.D. 3.如图,在⊙