预览加载中,请您耐心等待几秒...
1/4
2/4
3/4
4/4

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

初中数学复习课之浅见 关键词:目标回忆梳理沟通反思 复习课是以巩固梳理已学知识,使之形成体系、提高基本技能、增强解决实际问题能力为主要任务的一个重要教学环节。“复习课最难上。”这是许多数学教师经常发出的感叹。复习课既不像新授课那样有“新鲜感”,又不像练习课那样有“成功感”。就初中数学而言,教师一定要引导学生对各知识点做到了然于心,在有限的时间里,集中精力做好复习工作。达到“温故而知新”、“温故而提升”的目的。通过几年的教学实践,我认为复习要讲究一定策略和方法,复习前要做好规划,把目标定好,然后为实现这个目标制定措施,并来检验所制定的目标是否得到实现。这要求老师不仅仅要备好书本上的知识点,同时也要备好学生。针对不同的学生复习的重点也要各有侧重,重在出新,否则的话,程度好的学生会觉得是在一遍遍“烫剩饭”;中等程度的学生只学到一些表层的东西,进步不大;程度差的学生依然是听不懂,该不会的还是不会。对此,本人谈几点浅见。 一、明确复习目标,找到突破口。 上课开始,教师直接出示复习课题,出示的复习目标应注意如下三点: (一)、目标要全面。所谓“全面”,就是指按照数学教学大纲上的要求,有针对性地在知识、能力和思想品德三方面提出复习要求,不能厚此薄彼,甚至只提出知识方面的复习要求,把能力与思想品德丢在一边。例如,统计表和统计图的复习,除了应当掌握的知识外,学生的观察能力和应变能力也要得到发展,同时还要注意训练学生一丝不苟的认真态度、追求美观整洁的爱美情操和习惯等。 (二)、目标要准确。即针对性要强。一是目标中知识、能力、思想品德各方面的要求要准确,二是三者之间不能混淆。如统计表和统计图的复习,复习的目的是:将学过的统计表和统计图强化和分化,防止相关或相似知识的互串。学生易混的问题是:如何确定单位长度?(共性)为什么折线统计图中横标目的间隔要按实际年份留空?(个性)学生最容易遗忘的是:制图后忘掉写数据,或把标题与图表分开等等。在复习课上制定复习目标时,应注意和这些新授课后发现的问题结合起来,以利于解决学生的实际问题。 (三)目标要具体。不要提一些抽象或空泛的口号,诸如“通过复习培养学生良好的学习习惯”,粗一听很具体,细一想太空泛,到底培养学生的哪些习惯不得而知。其实一堂课只能按实际教学内容培养学生的某一方面的素质,太多会适得其反。 二、回忆 回忆,就是要求学生将学过的旧知不断提取而再现的过程,这是学生独立联想的有利时机,应尽最大可能让他们独立完成。如果是低年级,可让他们先看书本再回忆并说出来;中高年级也可让学生提前一天预习,这样课上会节省一些时间。当然,回忆过程也离不开教师的启发辅助。我们常采用如下策略: (一)、独立地默写。 (二)、同桌相互说。 (三)、启发得结果。 如要求学生用“组词”或“造句”等方式回忆出学过哪些“数”?哪些“形”?哪些“式”?哪些“量”?也不失为一种较好的“联想”式回忆的办法。 回忆过程中一般只要求学生写出或讲出“是什么”,不追问“为什么”或“怎么样”,以便一气呵成地将所有旧知“拉出来”,提高回忆的效率。因此,学生回忆时,教师不要过多地“插手”或“插嘴”,而是让学生七嘴八舌地说,龙飞凤舞地写,这时只有一个目的:把有关旧知回忆出来。例如,让学生回忆:我们已经学过了哪些“角”?只要学生讲出锐角、直角、平角……所有的角的名称,不必追问其意义和区别,也不用管这些角的序列。 回忆既是提取旧知的过程,同时也是进一步强化记忆的过程,还是互相启发获得联想结果的过程。如果学生的回忆不完整,这时可让其他学生或由教师补充,也可暂时放一放,之后在“梳理”中完善。 三、梳理 梳理,就是将旧知识点按一定标准分类。因此,梳理是复习中的重点。梳理要完成两项任务:一是将知识点联接起来(求同),二是把各知识点分化开来(求异)。这些工作教师在备课时应充分准备好,否则上课时会造成混乱。梳理往往同板书联系起来,使视听融为一体,增强复习效果。根据复习内容的异同,通常采用: (一)、边梳理边板书。即梳理与板书同步进行。 (二)先梳理再板书。即师生先一起将旧知的异同点输出,然后出示板书。 (三)、先板书后梳理。这在低年级比较适用。运用时也可在挂出板书的同时,边看板书边梳理。 梳理过程,实质上是将知识条理化、系统化的思考过程,其间应用的思考方法主要是“分类”,即根据一定的标准将知识分化。如四边形,根据对边关系可分成两类:两组对边分别平行的四边形(平行四边形),只有一组对边平行的四边形(梯形)。在小学里,一般应根据学生实际学习的内容及所达到的思维程度来教学,不必拘泥于完全科学性原则而把小学数学知识太宏观化,这就是作为“学科数学”与作为“科学数学”的区别之一。像四边形,严格地讲,应把两组对边都不平行(不规则四边形)作为一类,小学数