预览加载中,请您耐心等待几秒...
1/5
2/5
3/5
4/5
5/5

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

北师大版初中数学教材分析与教学应对策略 □郭应龙 数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括,形成方法和理论并进行广泛应用的过程。它可以帮助人们更好的探求客观世界的规律,对大量复杂的信息作出恰当的选择和判断,直接为社会创造价值。因此说数学是一门非常有用的科学。随着新课程改革不断深入,北师大版初中数学教材的使用在我校已快六年了。我本人也从七年开始用北师大版的新教材教到九年级了,时常听到同行抱怨:“新教材太难上了。课本上的不多,可考试考的不少,老师一教就会,学生一考就累……对新教材的褒贬众说纷纭。我在新教材的使用中,也遇到许多问题,产生很多困惑,引发了很多的思考,现我就对北师大初中数学教材,结合《九年义务教育数学课程标准》的一些课改理念进行简要的分析,与同行的老师一起交流,共同提高我们驾驭新课堂的能力,为不断提高数学教育教学质量而努力。一、北师大版数学教材的知识体系及编排意图北师大版初中数学分为:数与代数、空间与图形、统计与概率、课题与研究四个版块,在三个年级中采取交替渗透,螺旋上升的方法,以达到掌握知识,培养能力的目的。其中七年级上册共七章46节,一个课题学习;七年级下册共七章36节,一个课题学习:八年级上册共八章39节,一个课题学习;八年级下册共六章32节两个课题学习;九年级上册共六章21节,一个课题学习;九年级下册共四章24节,一个课题学习;整个学段共38章198节,六个课题学习。二、第三学段(7~9年级)目标1、数与代数:在本学段中,学生将学习实数、整式和分式、方程和方程组、不等式和不等式组、函数等知识,探索数、形及实际问题中蕴涵的关系和规律,初步掌握一些有效的表示、处理和交流数量关系以及变化规律的工具,发展符号感,体会数学与现实生活的紧密联系,增强应用意识,提高运用代数知识与方法解决问题的能力。2、空间与图形:在本学段中,学生将探索基本图形(直线形、圆)的基本性质及其相互关系,进一步丰富对空间图形的认识和感受,学习平移、旋转、对称的基本性质,欣赏并体验变换在现实生活中的广泛应用,学习运用坐标系确定物体位置的方法,发展空间观念。3、统计与概率:在本学段中,学生将体会抽样的必要性以及用样本估计总体的思想,进一步学习描述数据的方法,进一步体会概率的意义,能计算简单事件发生的概率。4、课题研究:在本学段中,学生将探讨一些有挑战性的研究课题,发展应用数学知识解决问题的意识和能力,同时进一步加深对相关数学知识的理解,认识数学知识之间的联系。三、北师大版数学教材的优点和存在的问题 ㈠新知的引入有趣新颖,但有些不适合农村学校。 该教材在很多情况下,新知的呈现,知识的发生过程都是在现实的背景中产生和发展的,让学生在数学思考与研究中发现知识。这一过程突出学生探索能力和创新精神的培养,符合数学课程标准中的探究、合作、创新的理念。但教材的这种做法也存在以下缺陷: ⑴问题背景及研究占据教材过多篇幅,导致很多重要的概念与知识点过度淡化,知识的内在联系也被弱化。 比如七年级上册4.6“垂直”一节,教材用大量篇幅让学生体会生活中的垂直,用各种方法画出垂直,然后用纸折叠出垂直,对垂直的形象认识占据太多时间,至于两直线垂直的位置关系和所形成的四个角的关系却忽略了,甚至连垂线段的概念都没有出现就直接得出“垂线段最短”的结论,让学生感觉到唐突,这种做法挤压了学生对知识内在理性分析的时间和空间,不利于学生抽象思维的培养。 ⑵北师大数学教材突出体现了知识的发生过程中对学生探索、创新能力的培养,但却忽视了知识应用能力,特别是解题能力的培养,有些章节甚至出现新课教学与课后练习的断裂,这样学生所学知识得不到及时的巩固,日久天长,势必会造成学困生的增多。 比如八年级上册第一章第一节《探索勾股定理》。这一节共用15页的版面介绍三种验证勾股定理的做法: ①利用数据枚举法说明勾股定理,这种做法能有效地培养学生探索精神与发现能力,是很必要的。 ②“演绎法”证明。这种方法能培养学生数形结合的能力,可以说是面积证法的一个经典,也是可以理解的。 ③“无字证明法”利用我国古代“青朱出入图”是勾股定理的无字证明的一个典范,这种方法的引入能很好的培养学生的观察能力和拼图能力,能让学生更深刻地理解勾股定理,同时渗透爱国主义教育。不难体会每一种方法的价值和意义。但最后一种方法,即使是对教师而言也是具有挑战性的,教材中还安排学生制作七巧板验证勾股定理,还要求学生撰写小论文,教学中是很难达到目的的。显然,本节的重点通过勾股定理的验证培养学生的数学能力。那么,教材就应该安排一些简单的习题加以巩固。而教材后面安排的6道习题大多是高难度的,有的综合等腰三角形的性质,还要添加辅助线,有的糅合了方程思想、不等式知识,圆与三角形等知识,要建立数学模型才能解决,难度太大,打消学生数学学习的兴趣。 ㈡习