预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共12页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

/NUMPAGES12 数列专题复习 一、等差数列的有关概念: 1、等差数列的判断方法:定义法或。 如设是等差数列,求证:以bn=为通项公式的数列为等差数列。 2、等差数列的通项:或。 如(1)等差数列中,,,则通项(答:); (2)首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是______(答:) 3、等差数列的前和:,。 如(1)数列中,,,前n项和,则=_,=_(答:,); (2)已知数列的前n项和,求数列的前项和(答:). 4、等差中项:若成等差数列,则A叫做与的等差中项,且。 提醒:(1)等差数列的通项公式及前和公式中,涉及到5个元素:、、、及,其中、称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。(2)为减少运算量,要注意设元的技巧,如奇数个数成等差,可设为…,…(公差为);偶数个数成等差,可设为…,,…(公差为2) 5、等差数列的性质: (1)当公差时,等差数列的通项公式是关于的一次函数,且斜率为公差;前和是关于的二次函数且常数项为0. (2)若公差,则为递增等差数列,若公差,则为递减等差数列,若公差,则为常数列。 (3)当时,则有,特别地,当时,则有. 如(1)等差数列中,,则=____(答:27); (4)若、是等差数列,则、(、是非零常数)、、,…也成等差数列,而成等比数列;若是等比数列,且,则是等差数列. 如等差数列的前n项和为25,前2n项和为100,则它的前3n和为。(答:225) (5)在等差数列中,当项数为偶数时,;项数为奇数时,,(这里即);。 如(1)在等差数列中,S11=22,则=______(答:2); (2)项数为奇数的等差数列中,奇数项和为80,偶数项和为75,求此数列的中间项与项数(答:5;31). 二、等比数列的有关概念: 1、等比数列的判断方法:定义法,其中或。 如(1)一个等比数列{}共有项,奇数项之积为100,偶数项之积为120,则为____(答:);(2)数列中,=4+1()且=1,若,求证:数列{}是等比数列。 2、等比数列的通项:或。 如等比数列中,,,前项和=126,求和.(答:,或2) 3、等比数列的前和:当时,;当时,。 如(1)等比数列中,=2,S99=77,求(答:44); (2)的值为__________(答:2046); 特别提醒:等比数列前项和公式有两种形式,为此在求等比数列前项和时,首先要判断公比是否为1,再由的情况选择求和公式的形式,当不能判断公比是否为1时,要对分和两种情形讨论求解。 4、等比中项:若成等比数列,那么A叫做与的等比中项。提醒:不是任何两数都有等比中项,只有同号两数才存在等比中项,且有两个。如已知两个正数的等差中项为A,等比中项为B,则A与B的大小关系为______(答:A>B) 提醒:(1)等比数列的通项公式及前和公式中,涉及到5个元素:、、、及,其中、称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2;(2)为减少运算量,要注意设元的技巧,如奇数个数成等比,可设为…,…(公比为);但偶数个数成等比时,不能设为…,…,因公比不一定为正数,只有公比为正时才可如此设,且公比为。如有四个数,其中前三个数成等差数列,后三个成等比数列,且第一个数与第四个数的和是16,第二个数与第三个数的和为12,求此四个数。(答:15,,9,3,1或0,4,8,16) 5.等比数列的性质: (1)当时,则有,特别地,当时,则有. 如(1)在等比数列中,,公比q是整数,则=___(答:512); (2)各项均为正数的等比数列中,若,则(答:10)。 (2)若是等比数列,则、、成等比数列;若成等比数列,则、成等比数列;若是等比数列,且公比,则数列,…也是等比数列。当,且为偶数时,数列,…是常数数列0,它不是等比数列. 如(1)已知且,设数列满足,且,则.(答:); (2)在等比数列中,为其前n项和,若,则的值为______(答:40) (3)若,则为递增数列;若,则为递减数列;若,则为递减数列;若,则为递增数列;若,则为摆动数列;若,则为常数列. (4)当时,,这里,但,是等比数列前项和公式的一个特征,据此很容易根据,判断数列是否为等比数列。 如若是等比数列,且,则=(答:-1) (5).如设等比数列的公比为,前项和为,若成等差数列,则的值为_____(答:-2) (6)在等比数列中,当项数为偶数时,;项数为奇数时,. (7)如果数列既成等差数列又成等比数列,那么数列是非零常数数列,故常数数列仅是此数列既成等差数列又成等比数列的必要非充分条件。 如设数列的前项和为(),关于数列有下列三个命题:①若,则既是等差数列又是等比数列;②若,则是等差数列;③若,则是等比数列。这些命题中