高中数学竞赛平面几何讲座 四点共圆问题.doc
as****16
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
高中数学竞赛平面几何讲座 四点共圆问题.doc
第页共NUMPAGES4页第四讲四点共圆问题“四点共圆”问题在数学竞赛中经常出现,这类问题一般有两种形式:一是以“四点共圆”作为证题的目的,二是以“四点共圆”作为解题的手段,为解决其他问题铺平道路.判定“四点共圆”的方法,用得最多的是统编教材《几何》二册所介绍的两种(即P89定理和P93例3),由这两种基本方法推导出来的其他判别方法也可相机采用.1“四点共圆”作为证题目的例1.给出锐角△ABC,以AB为直径的圆与AB边的高CC′及其延长线交于M,N.以AC为直径的圆与AC边的高BB′
数学竞赛平面几何讲座:四点共圆问题.doc
数学竞赛平面几何讲座:四点共圆问题以下是查字典数学网为您推荐的数学竞赛平面几何讲座:四点共圆问题希望本篇文章对您学习有所帮助。数学竞赛平面几何讲座:四点共圆问题四点共圆问题在数学竞赛中经常出现这类问题一般有两种形式:一是以四点共圆作为证题的目的二是以四点共圆作为解题的手段为解决其他问题铺平道路.1四点共圆作为证题目的例1.给出锐角△ABC以AB为直径的圆与AB边的高CC及其延长线交于MN.以AC为直径的圆与AC边的高BB及其延长线将于PQ.求证:MNPQ四点共圆.分析:设PQMN交于K点
高中数学竞赛平面几何讲座第4讲--四点共圆问题.doc
第页共NUMPAGES4页第四讲四点共圆问题“四点共圆”问题在数学竞赛中经常出现,这类问题一般有两种形式:一是以“四点共圆”作为证题的目的,二是以“四点共圆”作为解题的手段,为解决其他问题铺平道路.判定“四点共圆”的方法,用得最多的是统编教材《几何》二册所介绍的两种(即P89定理和P93例3),由这两种基本方法推导出来的其他判别方法也可相机采用.1“四点共圆”作为证题目的例1.给出锐角△ABC,以AB为直径的圆与AB边的高CC′及其延长线交于M,N.以AC为直径的圆与AC边的高BB′
高中数学竞赛平面几何讲座第四讲 四点共圆问题.doc
高中数学竞赛平面几何讲座第四讲四点共圆问题“四点共圆”问题在数学竞赛中经常出现,这类问题一般有两种形式:一是以“四点共圆”作为证题的目的,二是以“四点共圆”作为解题的手段,为解决其他问题铺平道路.判定“四点共圆”的方法,用得最多的是统编教材《几何》二册所介绍的两种(即P89定理和P93例3),由这两种基本方法推导出来的其他判别方法也可相机采用.1“四点共圆”作为证题目的例1.给出锐角△ABC,以AB为直径的圆与AB边的高CC′及其延长线交于M,N.以AC为直径的圆与AC边的高BB′及其延长线将于P,Q.求
数学竞赛平面几何讲座5讲--第四讲 四点共圆问题.doc
第四讲四点共圆问题“四点共圆”问题在数学竞赛中经常出现,这类问题一般有两种形式:一是以“四点共圆”作为证题的目的,二是以“四点共圆”作为解题的手段,为解决其他问题铺平道路.判定“四点共圆”的方法,用得最多的是统编教材《几何》二册所介绍的两种(即P89定理和P93例3),由这两种基本方法推导出来的其他判别方法也可相机采用.1“四点共圆”作为证题目的例1.给出锐角△ABC,以AB为直径的圆与AB边的高CC′及其延长线交于M,N.以AC为直径的圆与AC边的高BB′及其延长线将于P,Q.求证:M,N,P,Q四点共