预览加载中,请您耐心等待几秒...
1/6
2/6
3/6
4/6
5/6
6/6

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

《高等数学A》考试大纲 一、总要求 学生应了解或理解《高等数学A》中函数、极限和连续、一元和多元微积分、空间解析几何、无穷级数、常微分方程的基本概念与基本理论;学会应用变量数学的方法分析和研究自然现象中的数量关系,能运用基本概念、基本理论和基本方法进行推理证明及计算、能综合运用所学知识分析并解决实际问题。 本大纲对内容要求的高低用不同词汇加以区分;对概念和理论从高到低分“理解”、“了解”(或“知道”)两个层次;对方法和运算从高到低分“掌握”、“会”两个层次。 第一部分高等数学A1部分 函数与极限 考试内容:映射和函数;数列的极限;函数的极限;无穷小、无穷大;极限运算法则; 极限存在准则、两个重要极限;无穷小的比较;函数的连续性与间断点;连续函数的运算与初等函数的连续性;闭区间上连续函数的性质。 考试要求: 1.理解函数的概念,掌握函数的表示法,会建立简单应用问题中的函数关系式。 2.了解函数的有界性、单调性、周期性和奇偶性。 3.理解复合函数及分段函数的概念,了解反函数的概念。 4.掌握基本初等函数的性质及其图形,了解初等函数的概念。 5.理解极限的概念,理解函数左、右极限的概念,以及极限存在与左、右极限之间的关系。 6.掌握极限的性质及四则运算法则。了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限的方法。 7.理解无穷小、无穷大以及无穷小的阶的概念,会用等价无穷小求极限。 8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。 9.了解初等函数的连续性和闭区间上连续函数的性质(最大值、最小值定理、零点定理与介值定理),并会应用这些性质。 第二章导数与微分 考试内容:导数的概念;函数的求导法则;高阶导数;隐函数及由参数方程所确定的函数的导数;相关变化率;函数的微分。 考试要求: 1.理解导数概念及导数的几何意义,会求平面曲线的切线方程和法线方程.理解函数的可导性与连续性之间的关系。 2.掌握导数的四则运算法则和复合函数的求导法,掌握基本初等函数的导数公式。 3.会求分段函数的一阶导数;会求隐函数和由参数方程所确定的函数的一阶、二阶导数,会求反函数的导数。 4.了解高阶导数的概念,会求简单函数的高阶导数。 5.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分。 6.了解微分的四则运算法则和一阶微分形式的不变性,了解微分在近似计算中的应用。 第三章微分中值定理与导数的应用 考试内容:微分中值定理(罗尔定理、拉格朗日中值定理、柯西中值定理);洛必达法则;泰勒公式;函数单调性与曲线的凹凸性;函数的极值及最大值和最小值;函数图形的描绘;曲率。 考试要求: 1.理解罗尔、拉格朗日中值定理并掌握其应用。了解并会简单使用柯西中值定理和泰勒公式。 2.掌握用洛必达法则求未定式极限的方法。 3.掌握用导数判断函数的单调性、函数图形的凹凸性,会求函数图形的拐点,会求水平、铅直渐近线,会列表分析函数的性态。 4.理解函数的极值概念,掌握求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用。 5.了解曲率和曲率半径的概念,会计算曲率和曲率半径。 第四章不定积分 考试内容:不定积分的概念与性质;换元积分法;分部积分法;有理函数的积分。 考试要求: 1.理解原函数及不定积分的概念。掌握不定积分的基本公式和性质。 2.掌握不定积分的换元法和分部积分法。 3.会求简单有理函数的不定积分。 第五章定积分 考试内容: 定积分的概念与性质;微积分基本公式;定积分的换元积分法和分部积分法;反常积分。 考试要求: 1.理解定积分的概念,掌握定积分的基本性质,理解定积分中值定理。 2.理解积分上限函数及其求导定理,掌握牛顿一莱布尼茨公式。 3.掌握定积分的换元积分法与分部积分法。 4.了解反常积分的概念,会计算反常积分并会判别反常积分的敛散性。 第六章定积分的应用 考试内容:定积分的元素法;定积分在几何学上的应用。 考试要求: 1.掌握用定积分计算平面图形的面积、平面曲线的弧长、旋转体的体积 。 第二部分高等数学A2部分 第七章微分方程 考试内容:微分方程的基本概念;可分离变量的微分方程;齐次方程;一阶线性微分方程;可降阶的高阶微分方程;高阶线性微分方程;常系数齐次线性微分方程;常系数非齐次线性微分方程。 考试要求: 1.了解微分方程及其阶、解、通解、初始条件和特解等概念。 2.掌握可分离变量的微分方程,齐次方程和一阶线性微分方程的求解方法。 3.会用降阶法解一些高阶微分方程。 4.掌握二阶常系数齐次线性微分方程的解法,会求自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程的特解和通解。 第八章空间解析几何和向量代数 考试内容:向量及其线性运算;两向量的数量积、