预览加载中,请您耐心等待几秒...
1/4
2/4
3/4
4/4

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2010年中考精选题1 1、如图,抛物线经过三点. (1)求出抛物线的解析式; (2)P是抛物线上一动点,过P作轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由; (3)在直线AC上方的抛物线上有一点D,使得的面积最大,求出点D的坐标. O x y A B C 4 1 (第26题图) 解:(1)该抛物线过点,可设该抛物线的解析式为. 将,代入, 得解得 此抛物线的解析式为. (3分) (2)存在. (4分) 如图,设点的横坐标为, O x y A B C 4 1 (第26题图) D P M E 则点的纵坐标为, 当时, ,. 又, ①当时, , 即. 解得(舍去),. (6分) ②当时,,即. 解得,(均不合题意,舍去) 当时,. (7分) 类似地可求出当时,. (8分) 当时,. 综上所述,符合条件的点为或或. (9分) (3)如图,设点的横坐标为,则点的纵坐标为. 过作轴的平行线交于.由题意可求得直线的解析式为. (10分) 点的坐标为.. (11分) . 当时,面积最大.. (13分) 2、如图,二次函数的图象经过点D(0,),且顶点C的横坐标为4,该图象在x轴上截得的线段AB的长为6. ⑴求二次函数的解析式; ⑵在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标; ⑶在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由. ⑴设二次函数的解析式为:y=a(x-h)2+k∵顶点C的横坐标为4,且过点(0,) ∴y=a(x-4)2+k………………① 又∵对称轴为直线x=4,图象在x轴上截得的线段长为6∴A(1,0),B(7,0) ∴0=9a+k………………②由①②解得a=,k=∴二次函数的解析式为:y=(x-4)2- ⑵∵点A、B关于直线x=4对称∴PA=PB∴PA+PD=PB+PD≥DB∴当点P在线段DB上时PA+PD取得最小值∴DB与对称轴的交点即为所求点P 设直线x=4与x轴交于点M∵PM∥OD,∴∠BPM=∠BDO,又∠PBM=∠DBO ∴△BPM∽△BDO∴∴∴点P的坐标为(4,) ⑶由⑴知点C(4,),又∵AM=3,∴在Rt△AMC中,cot∠ACM=, ∴∠ACM=60o,∵AC=BC,∴∠ACB=120o ①当点Q在x轴上方时,过Q作QN⊥x轴于N如果AB=BQ,由△ABC∽△ABQ有 BQ=6,∠ABQ=120o,则∠QBN=60o∴QN=3,BN=3,ON=10,此时点Q(10,), 如果AB=AQ,由对称性知Q(-2,) ②当点Q在x轴下方时,△QAB就是△ACB,此时点Q的坐标是(4,), 经检验,点(10,)与(-2,)都在抛物线上 综上所述,存在这样的点Q,使△QAB∽△ABC 点Q的坐标为(10,)或(-2,)或(4,).