预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

双曲线及其标准方程(一) 东风中学刘玲 教学目的: 1.使学生掌握双曲线的定义,熟记双曲线的标准方程,并能初步应用; 2.通过对双曲线标准方程的推导,提高学生求动点轨迹方程的能力; 3.使学生初步会按特定条件求双曲线的标准方程; 4.使学生理解双曲线与椭圆的联系与区别以及特殊情况下的几何图形(射线、线段等); 5.培养学生发散思维的能力 教学重点:双曲线的定义、标准方程及其简单应用 教学难点:双曲线标准方程的推导及待定系数法解二元二次方程组 教具:多媒体 教学过程: 一、复习引入: 1椭圆定义: 平面内与两个定点的距离之和等于常数(大于)的点的轨迹叫作椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距 2.椭圆标准方程: (1)(2)其中 二、讲解新课: 1.双曲线的定义:平面内到两定点的距离的差的绝对值为常数(小于)的动点的轨迹叫双曲线即 这两个定点叫做双曲线的焦点,两焦点间的距离叫做焦距 概念中几个容易忽略的地方:“平面内”、“距离的差的绝对值”、“常数小于” 2.双曲线的标准方程: 根据双曲线的定义推导双曲线的标准方程:推导标准方程的过程就是求曲线方程的过程,可根据求动点轨迹方程的步骤,求出双曲线的标准方程过程如下:(1)建系设点;(2)列式;(3)变换;(4)化简;(5)证明 ,此即为双曲线的标准方程 它所表示的双曲线的焦点在轴上,焦点是,其中 若坐标系的选取不同,可得到双曲线的不同的方程,如焦点在轴上,则焦点是,将互换,得到,此也是双曲线的标准方程 3.双曲线的标准方程的特点: (1)双曲线的标准方程有焦点在x轴上和焦点y轴上两种: 焦点在轴上时双曲线的标准方程为:(,); 焦点在轴上时双曲线的标准方程为:(,) (2)有关系式成立,且其中a与b的大小关系有三种情况。 4.焦点的位置:从椭圆的标准方程不难看出椭圆的焦点位置可由方程中含字母、项的分母的大小来确定,分母大的项对应的字母所在的轴就是焦点所在的轴而双曲线是根据项的正负来判断焦点所在的位置,即项的系数是正的,那么焦点在轴上;项的系数是正的,那么焦点在轴上 5.双曲线与椭圆之间的区别与联系 三、讲解范例: 例1已知双曲线两个焦点的坐标为,双曲线上一点P到的距离之差的绝对值等于6,求双曲线标准方程 变题1:将条件改为双曲线上一点P到,的距离的差等于6,如何? 变题2:将条件改为双曲线上一点P到,的距离的差的绝对值等于10,如何? 例2 四、课堂练习: 五、小结: 1、双曲线的两类标准方程是焦点在轴上,焦点在轴上有关系式成立,且其中a与b的大小关系:可以为 2、焦点位置的确定方法。 3、求双曲线标准方程的关键。 4、双曲线与椭圆之间的区别与联系。 六、课后作业:习题8.32.3