预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共13页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

全国中考数学命题特点与命题趋势分析 中考是初中教学的指挥棒,研究、分析中考试题对教学有着重要的指导意义。研究近几年的中考数学试题,把握中考命题的方向和脉搏,对落实新课程标准,有效地组织数学课的教学和初三备考复习,同样也有着重要的指导意义。 一、命题特点分析 认真分析近几年全国各地的中考数学试题,不难发现,试题注重对学生的基础知识、基本技能、基本思想方法的“三基”考查。强调理论联系实际,关注与实际生活的联系,体现人文精神、数学知识与生活实际的密切联系,强调人与自然、社会协调发展的现代意识,引导学生关注社会生活,密切联系最新的科技成果和社会热点。综观2011年各地的中考试题,有以下几个突出的特点:一是典型性,即选题典型,难易程度,做到逐步递进;二是针对性,即选题精炼,能帮助学生走出题海,减轻学习负担,提高复习效率;三是新颖性,即选题结合近几年全国中考数学命题走向,体现探究性、开放性、活动性,从多方面培养学生的能力与数学素养。具体分析如下: (一)注重知识点与学习能力的考查 分析近几年全国各地的中考试题,对照每年的《中考说明》要求,均注意到了对重要知识点的考查。如:在每年的第一类解答题中,必考的内容有实数的运算、代数式的化简求值、解不等式组、解方程或方程组、一元二次方程根的判别式或根与系数的关系、概率统计等;在每年的第二类解答题中,列方程解应用题、解直角三角形、求函数解析式、平面图形的简单论证和计算等是考查的重点;在每年的第三类解答题中,则是中考稳中求变的突破口,将基础性、应用性、实践性、开放性、探究性融入其中。但总体来说,还是有规律可以捕捉的,如圆与三角形、圆与四边形中等积式和比例式的证明,几何与方程、函数的结合题,几何图形中的一些条件给定、探求结果的开放型题等都是近几年来保留的压轴题。 1.从知识点上看,在命题方向上,近几年没有太多的起伏;从内容上看,几何题中的面积、弧长、侧面积或圆中线段、角度计算或者与代数、相似三角形、三角函数的联系等,二次函数综合题仍是多数省市压轴题的首选内容,圆的内容也有所侧重,并且考试内容与考查方式的结合新颖。对这些知识点的考查并不放在对概念、性质的记忆上,而是对概念、性质的理解与运用上,通过现实生活来体验数学的妙趣。 2.从学习能力上看,着重考查学生数学思想的理解及运用。数学能力是学好数学的根本,主要表现为数学的思想方法。初中数学中最常见的思想方法有:分类、化归、数形结合、猜想与归纳等。其中,数形结合思想、方程与函数思想、分类讨论思想等几乎是近几年中考试卷考查的重点。 (二)注重运用知识解决实际问题的考查 数学来源于生活,同时也必将应用于生活,学数学就是为了解决生活中所碰到的实际问题。近几年的中考题相当注重运用数学知识解决实际问题的考查,考查层次非常丰富,不同水平的学生可以充分展示自己不同的探究深度,以及综合运用数学知识、思想方法去探索规律、获取新知的能力。 (三)注重创新思维与数学活动过程的考查 近几年不仅注重对学生数学学习结果的评价,更注重对学生数学活动过程的评价;不仅注重数学思想方法的考查,还注重对学生在一般性思维方法与创新思维能力发展等方面的评价,尤其注重对学生探索性思维能力和创新思维能力的考查;不仅关注学生知识水平的提高,更多的则是关注对学生的数学思维潜力的开发与提高。试题的形式多样,既有通过学生阅读材料去理解一些数学对象的试题,也有借助所提供的各种形式的素材去考查学生从中获取信息的试题,还有适量的操作性和探索性试题。 二、命题趋势分析 陶行知先生曾说过:“教育必须做到解放学生的眼睛,让他们亲自看一看;解放学生的大脑,让他们亲自想一想;解放学生的嘴巴,让他们亲自说一说;解放学生的双手,让他们亲自做一做。”我们认为,这是对素质教育的最佳诠释。回归教育本原、贴近学生数学化发展需求,是全面实施数学素质教育的根本所在。中考命题中如何从具体情境中抽象出数学材料,并将获得的材料符号化,体现了数学问题源于教学但高于教学的教学理念,使试题始终散发着“数学味”,促进学生个性得充分发展一直是各地命题专家关注的热点。由近几年的命题特点来看,体现基础性、应用性、实践性、开放性、探究性是近几年全国中考数学试题的重要特征,也将是今后几年全国中考数学命题的总趋势。具体分析如下: 1.数与式部分的试题早已不再繁、难、偏,取而代之的是点多面广。多是与数学意义、与实际生活紧密联系的问题,以及在变化的图形或实际问题的背景中观察、概括出一般规律,运用数学模型解决实际问题等。 2.空间与图形部分的内容与以往相比难度有较大的降低,不会出现特别繁难的几何论证题目,在填空题和选择题中将重点考查视图、几何体及其平面展开图之间的关系以及初步的空间观念,几何论证题将以常见的几何图形为主,贴近教材,接近学生基础,注重格式的规范性及论证的严密性。