预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共16页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

目录 1离心式压气机的工作原理及工作特性…………………………………………………………...1 2增压器喘振机理………………………………………………………………………………….3 3增压器喘振原因分析……………………………………………………………………………5 3.1增压系统流道阻塞因素的影响…………………………………………………..……….6 3.2增压器或柴油机本身的故障,柴油机运行工况不良………………………………..……6 3.3运转中的增压器和柴油机暂时失配和船体阻力增大…………………………….……….7 3.4喘振处理方法…………………………………………………………………….………….8 4实例分析………………………………………………………………………………...…….….10 4.1案例1…………………………………………………………………………………….…10 4.2案例2………………………………………………………………………………..………12 4.3案例3………………………………………………………………….…………...…….….12 4.4案例总结…………………………………………………………………………...………13 5管理措施…………………………………………………………………………………….……13 船舶主机废气涡轮增压器喘振分析 引言 现代船舶大型低速柴油机,大多采用增压的方式来提高经济性,降低燃油消耗率.柴油机实现增压,可以在气缸工作容积和柴油机转速不变的情况,使柴油机功率增加百分几十,甚至成倍增加。若柴油机采用机械增压方式,则消耗柴油机的功率。因此,大功率柴油机一般采用废气涡轮增压器.柴油机功率增加随增压压力的增加而成比例的增加。增压系统工作的优劣与否直接影响着柴油机性能及其可靠性。近些年来,船舶柴油机上的涡轮增压器故障越来越令人关注。在废气涡轮增压器故障中,又以压气机的喘振最容易发生,也最为常见。作为增压器故障之一的增压器喘振直接影响着主机的整体性能。 因此,对出现喘振的原因进行分析了解,以便能在故障发生时迅速做出正确处理,避免不必要的损失。根据船舶主机废气涡轮增压器的工作原理及喘振机理,有必要提出了一套专门用于分析喘振原因的方法,以减少盲目查找所带来的不必要的工作,从而迅速解决故障。 1离心式压气机的工作原理及工作特性 从柴油机气缸排出的废气具有很高的温度(约400~500°C)和一定压力(约0.2~0.4MPa)及较高的流速,它所含热量约占燃油燃烧所放出热量的23%~40%。因此将废气通入涡轮机,使涡轮机高速旋转来带动离心式压气机,由此实现柴油机增压,这种增压形式称为废气涡轮增压。 废气涡轮增压器的压气机一般都采用单级离心式压气机.它由进气道、工作轮、扩压器和排气蜗壳组成.当压气机工作时,新鲜空气经过进气道轴向进入压气机叶轮.由于压气机叶轮的旋转,空气经过空气滤器消声器被吸入压气机叶轮。由于通道的导流作用,气流能在最小的损失下均匀进入压气机叶轮.进气道是渐缩流道,在进气道中,压力、温度略有降低,流速提高.正是因为压力降低,空气才被吸入工作叶轮.空气进入压气机叶轮后,随着叶轮高速回转,因而产生离心力.在离心力的作用下,空气向叶轮外缘流动并被压缩,其压力、温度和速度迅速增加,其中流速提高最大.这是因为叶轮对气体作功,不叶轮的机械能变成了气体的动能和压力能.然后气体进入扩压器,在扩压器中由于流道是逐渐扩大,使空气的动能转化为压力能,流速降低,压力升高。蜗壳中的通道也是渐扩的,因而空气流过时继续将动能转化为压力能. 离心式压气机在各种不同工况工作时,它的各主要参数会随之变化。在不同转速下压气机的排出压力和效率随空气流量的变化规律,称为离心式压气机的特性。表示这种特性的曲线称为压气机的特性曲线,图1为现代压气机的特性曲线。压气机特性曲线上的等转速运行线,通常称为增压特性线。它的变化特点是:随着空气流量V的增加,增压比Πc开始是增加的。当流量V增加至某一值时,Πc值达到最高。然后,进一步增加流量V,增压比Πc反而降低。这样,增压特性线如似马鞍形状。这种变化特点是由于压气机中气体流动特点引起的。我们可以通过图2来解释这种现象。从理论上讲,一只带后弯式叶片的压气机,在没有流动损失的理想情况下,转速为常数时,增压比Πc与空气流量的关系是呈线性下降趋势的,如图2中的a线。 但压气机中的实际流动是有损失的。可以把压气机中的流动损失分为两类,即摩擦损失和撞击损失。摩擦损失包括空气与壁面的摩擦、空气流内部的相互摩擦以及可能产生的波阻损失。这些损失都随流过压气机的气流速度而变化,也就是随空气流量而变化,且随流量的增加而增大。如果没有撞击损失,压气机消耗的功用来压缩空气和克服摩擦损失。因此