预览加载中,请您耐心等待几秒...
1/5
2/5
3/5
4/5
5/5

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

Bridgman的晶体生长技术 Bridgman的晶体生长技术 1.Bridgeman法晶体生长技术简介 Bridgman法是由Bridgman于1925年提出的。传统Bridgman法晶体生长的基本原理如图.1所示。将晶体生长的原料装入合适的容器中,在具有单向温度梯度的Bridgman长晶炉内进行生长。Bridgman长晶炉通常采用管式结构,并分为3个区域,即加热区、梯度区和冷却区。加热区的温度高于晶体的熔点,冷却区低于晶体熔点,梯度区的温度逐渐由加热区温度过渡到冷却区温度,形成一维的温度梯度。首先将坩埚置于加热区进行熔化,并在一定的过热度下恒温一段时间,获得均匀的过热熔体。然后通过炉体的运动或坩埚的移动使坩埚由加热区穿过梯度区向冷却区运动。坩埚进入梯度区后熔体发生定向冷却,首先达到低于熔点温度的部分发生结晶,并随着坩埚的连续运动而冷却,结晶界面沿着与其运动相反的方向定向生长,实现晶体生长过程的连续进行。 图1Bridgman法晶体生长的基本原理 (a)基本结构;(b)温度分布。 图1.所示坩埚轴线与重力场方向平行,高温区在上方,低温区在下方,坩埚从上向下移动,实现晶体生长。该方法是最常见的Bridgman法,称为垂直Bridgman法。除此之外,另一种应用较为普遍的是的水平Bridgman法其温度梯度(坩埚轴线)方向垂直于重力场。垂直Bridgman法利于获得圆周方向对称的温度场和对流模式,从而使所生长的晶体具有轴对称的性质;而水平Bridgman法的控制系统相对简单,并能够在结晶界面前沿获得较强的对流,进行晶体生长行为控制。同时,水平Bridgman法还有利于控制炉膛与坩埚之间的对流换热,获得更高的温度梯度。此外,也有人采用坩埚轴线与重力场成一定角度的倾斜Bridgman法进行晶体生长。而垂直Bridgman法也可采用从上向下生长的方式。 2.Bridgman法的结构组成 典型垂直Bridgman法晶体生长设备包括执行单元和控制单元。其中执行单元的结构,由炉体、机械传动系统和支撑结构3个部分构成。炉体部分采用管式炉,通过多温区的结构设计实现一维的温度分布,获得晶体生长的温度场。生长晶体的坩埚通过一个支撑杆放置在炉膛内的一维温度场中,如图1所示。机械传动部分包括电机和减速机构。减速机构将电机的转动转换为平移运动,控制坩埚与温度场的相对运动。可以采取控制炉体的上升或坩埚的下降两种方式实现晶体生长速率的控制。通常Bridgman生长设备还包括坩埚旋转机构,通过另外一个电机驱动坩埚支撑杆转动,控制坩埚在炉膛内按照设定的方式和速率转动,进行温度场和对流控制。支撑结构提供一个稳定的平台,用于固定炉体和机械传动系统,实现其相对定位。在支撑结构中设计位置调节结构和减震结构,保证晶体生长速率的稳定性。控制单元包括温度控制和机械传动控制。温度控制主要进行不同加热段加热功率的调节,形成恒定的温度场。通常通过热电偶等测温元件提供温度信息,进行实时控制。机械传动控制部分进行电机转速控制,从而实现坩埚或炉体移动速度的控制,以及坩埚的旋转。 3.坩埚的选材与结构设计 坩埚是直接与所生长的晶体及其熔体接触的,并且对晶体生长过程的传热特性具有重要的影响。因此,坩埚材料的选择是晶体生长过程能否实现以及晶体结晶质量优劣的控制因素之一。坩埚材料的选择是由所生长的晶体及其在熔融状态下的性质决定的。对于给定的晶体材料,所选坩埚材料应该满足以下物理化学性质: (1)有较高的化学稳定性,不与晶体或熔体发生化学反应。 (2)具有足够高的纯度,不会在晶体生长过程中释放出对晶体有害的杂质、污染晶体材料,或与晶体发生粘连。 (3)具有较高的熔点和高温强度,在晶体生长温度下仍保持足够高的强度,并且在高 温下不会发生分解、氧化等。 (4)具有一定的导热能力,便于在加热区对熔体加热或在冷却区进行晶体的冷却。 但导热能力太强对晶体生长是不利的。坩埚的导热特性对晶体生长过程的影响较为复杂,通过具体的传热计算才能准确理解。 (5)具有可加工性,便于根据晶体生长的需要加工成不同的形状。特别是在生长高 蒸气压或易氧化的材料时,要进行坩埚的焊封,对其可加工性和高温强度要求更高。 (6)具有与晶体材料匹配的热膨胀特性,不会在晶体生长过程中对晶体形成较大的 压应力,并在晶体生长结束后易于取出。 4.温度场的控制方法 如图1所示,晶体的结晶过程是在温度梯度区内完成的,维持一个稳定的温度梯度是晶体生长过程中温度控制的关键。从维持平面结晶界面的角度考虑,温度梯度应该较大,但过大的温度梯度可能导致晶体中出现较大的应力,对晶体结晶质量的控制不利。同时,过大的温度梯度也会带来温度控制技术上的困难。因此,实际温度梯度应针对具体的晶体材料,综