考研 线性代数 笔记精华 二次型.doc
ys****39
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
考研 线性代数 笔记精华 二次型.docx
线代框架之二次型1.定义:二次型(其中,即为对称矩阵,)。只含平方项的二次型称为二次型的标准形(此时二次型的矩阵为对角矩阵)经过化为标准形(其中).注:二次型的标准形不是唯一的,与所作的正交变换有关,但非零系数的个数是由唯一确定的.标准形的系数只在1,-1,0三个数中取值的称为二次型的规范形,任意二次型均存在可逆变换化为规范形。2.合同:与合同设A和B是n阶矩阵,若有可逆矩阵C使得,则称A与B合同。合同的性质:;合同变换不改变二次型的正定性.√两个矩阵合同的充分必要条件是:它们有相同的正负惯性指数.√两个
考研 线性代数 笔记精华 二次型.doc
线代框架之二次型1.定义:二次型(其中,即为对称矩阵,)。只含平方项的二次型称为二次型的标准形(此时二次型的矩阵为对角矩阵)经过化为标准形(其中).注:二次型的标准形不是唯一的,与所作的正交变换有关,但非零系数的个数是由唯一确定的.标准形的系数只在1,-1,0三个数中取值的称为二次型的规范形,任意二次型均存在可逆变换化为规范形。2.合同:与合同设A和B是n阶矩阵,若有可逆矩阵C使得,则称A与B合同。合同的性质:;合同变换不改变二次型的正定性.√两个矩阵合同的充分必要条件是:它们有相同的正负惯性指数.√两个
考研 线性代数 笔记精华 打印.docx
一章行列式一、重点1、理解:行列式的定义,余子式,代数余子式。2、掌握:行列式的基本性质及推论。3、运用:运用行列式的性质及计算方法计算行列式,用克莱姆法则求解方程组。二、难点行列式在解线性方程组、矩阵求逆、向量组的线性相关性、求矩阵的特征值等方面的应用。三、重要公式1、若A为n阶方阵,则│kA│=kn│A│2、若A、B均为n阶方阵,则│AB│=│A│·│B│3、若A为n阶方阵,则│A*│=│A│n-1若A为n阶可逆阵,则│A-1│=│A│-14、若A为n阶方阵,λi(i=1,2,…,n)是A的特征值,│
考研 线性代数 笔记精华 3打印.docx
一章行列式一、重点1、理解:行列式的定义,余子式,代数余子式。2、掌握:行列式的基本性质及推论。3、运用:运用行列式的性质及计算方法计算行列式,用克莱姆法则求解方程组。二、难点行列式在解线性方程组、矩阵求逆、向量组的线性相关性、求矩阵的特征值等方面的应用。三、重要公式1、若A为n阶方阵,则│kA│=kn│A│2、若A、B均为n阶方阵,则│AB│=│A│·│B│3、若A为n阶方阵,则│A*│=│A│n-1若A为n阶可逆阵,则│A-1│=│A│-14、若A为n阶方阵,λi(i=1,2,…,n)是A的特征值,│
考研 线性代数 笔记精华 2打印.docx
第二章矩阵题型归纳及思路提示