预览加载中,请您耐心等待几秒...
1/5
2/5
3/5
4/5
5/5

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

《数学分析》考试大纲 一、考试的性质 数学分析是大学数学系本科学生的最基本课程之一,也是大多数理工科专业学生的必修基础课。为帮助考生明确考试范围和有关要求,特制订出本考试大纲。 本考试大纲主要根据北京林业大学数学与应用数学本科《数学分析》教学大纲编制而成,适用于报考北京林业大学数学学科各专业(基础数学、概率论与数理统计、计算数学、应用数学)硕士学位研究生的考生。 二、考试内容和基本要求 1.实数集与函数 (1)确界概念,确界原理 (2)函数概念与运算,初等函数 要求:理解确界概念与确界原理,并能运用于有关命题的运算与证明。深刻理解函数的意义,掌握函数的四则运算。 2.数列极限 (1)数列极限的ε一N定义 (2)收敛数列的性质 (3)数列的单调有界法则,柯西收敛准则,重要极限 要求:深刻理解数列极限的ε一N定义,并会运用它验证给定数列的极限;掌握数列极限的性质,并会运用它证明或计算给定数列的极限;掌握数列极限存在的充要条件与充分条件,并能运用这些条件证明或判断数列极限的存在性;掌握重要极限并能运用它计算某些数列极限。 3.函数极限 (1)函数极限的ε一M定义和ε一δ定义,单侧极限 (2)函数极限的性质 (3)海涅定理(归结原则),柯西收敛准则,两个重要极限 (4)无穷小量与无穷大量的定义、性质,无穷小(大)量阶的比较 要求:理解各类函数极限的定义,并能按定义验证给定的函数极限;掌握函数极限的性质,并能用它证明或计算给定的函数极限。掌握函数极限的归结原则,并能用它来判断函数极限的存在性和计算某些数列极限。掌握函数极限的柯西准则,了解单侧极限的单调有界定理;熟练掌握两个重要极限,并运用它们进行有关函数极限的计算;掌握各类无穷小量与无穷大量的定义与性质,理解无穷小(大)量的阶的概念。 4.函数的连续性 (1)函数在一点连续,单侧连续和在区间上连续的定义,间断点的类型 (2)连续函数的局部性质。复合函数的连续性,反函数的连续性。闭区间上连续函数的性质。 (3)一致连续的定义,初等函数的连续性 要求:深刻理解函数连续性概念,掌握间断点的概念及分类;掌握连续函数的局部性质以及复合函数和反函数的连续性,掌握闭区间上连续函数的性质;理解函数在区间上一致连续概念,并能用定义验证给定函数在某区间上为一致连续或非一致连续。 5.导数与微分 (1)导数的定义,导数的几何意义 (2)导数四则运算、反函数导数、复合函数导数,求导法则与求导公式 (3)参数方程所确定的函数的导数,高阶导数 (4)微分概念、微分基本公式,微分法则,一阶微分形式的不变性。微分在近似计算中的应用,高阶微分 要求:深刻理解导数概念,并能用定义求某些函数在一点的导数,清楚可导与连续的关系;掌握求导法则与技巧,能熟练地用它们计算可导函数的导数;理解可微性概念,并能用于近似计算。理解高阶导数的概念,掌握计算方法。掌握参数方程所确定函数的求导方法。 6.微分中值定理及其应用 (1)费马定理,罗尔定理,拉格朗日定理 (2)柯西中值定理,罗比达法则,不定式极限 (3)泰勒公式 (4)函数的单调性、凸性与拐点、极值与最值 (5)渐近线,函数作图。 要求:深刻理解中值定理的分析意义与几何意义,会证明中值定理,学会用作辅助函数证明问题的方法。会用中值定理论证问题;熟练掌握罗比达法则,并能迅速准确地计算出各种不定式极限;理解泰勒定理的内容与意义,会用泰勒公式解题;掌握应用导数研究函数单调性、极值和凹凸性的方法。知道描绘函数图象的步骤和方法。 7.实数的完备性 (1)区间套定理,柯西收敛准则,聚点定理,有限覆盖定理,致密性定理 (2)闭区间上连续函数的性质及证明 要求:理解描绘实数完备性的几个定理的意义,并能运用它们论证一些理论问题。掌握闭区间上连续函数的性质和有关命题证明的技巧。 8.不定积分 (1)原函数与不定积分的概念,基本积分表,线性运算法则 (2)换元积分法,分部积分法 (3)有理函数的积分法。可化为有理函数的某些类型函数的积分 要求:掌握原函数与不定积分概念、不定积分的运算法则;掌握换元积分法与分部积分法、分解有理函数为部分分式的方法;掌握某些可有理化函数的不定积分的求法。 9.定积分 (1)定积分的概念,牛一莱定理 (2)可积的必要条件,达布上下和,可积的充要条件,可积函数类 (3)定积分的性质:线性性质,区间可加性,单调性,绝对可积性,积分第一、第二中值定理 (4)微积分学基本定理。换元积分法与分部积分法。泰勒公式的积分型余项 要求:深刻理解定积分的概念与意义。理解可积分的必要条件、充要条件,初步掌握判断函数是否可积的基本方法;熟练掌握定积分的性质,并能用它证明某些有关问题;深刻理解微积分学基本定理的意义,并具有应用它证明有关定积分问题的能力;熟练掌握与应用牛一莱公式,熟练掌握计算定积分的