基于数据扰动的跨域自适应语义分割方法及装置.pdf
努力****冰心
亲,该文档总共16页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
基于数据扰动的跨域自适应语义分割方法及装置.pdf
本发明提供的一种基于数据扰动的跨域自适应语义分割方法及装置,该方法包括,获取待处理数据以及添加数据扰动后的语义分割特征;基于所述待处理数据以及所述语义分割特征确定损失函数;基于所述损失函数通过误差反向传播算法训练模型得到跨域自适应语义分割模型,通过对目标域中大量无标签数据,本发明对这部分数据随机加入扰动,并保证经过扰动处理的图像能够保持语义的一致性,从数据扰动和跨域原型分类器两个角度解决了源域和目标域之间的领域不一致问题,并且针对在现实应用中更具实际应用价值的少量监督问题做了针对性的设计,并在基于对抗的学
基于双向无监督域适应融合的跨星遥感图像语义分割方法.pdf
本发明公开了一种基于双向无监督域适应融合的跨星遥感图像语义分割方法,包括源域‑目标域图像双向转换模型训练、图像转换模型双向转换器参数选择、源域‑目标域图像双向转换、源域和拟目标域语义分割模型训练、源域和目标域类别分割概率生成以及融合。本发明利用源‑目标和目标‑源双向域适应,将源域和目标域上类别分割进行概率融合,提高了跨星遥感图像语义分割模型的准确率和鲁棒性,进一步通过双向语义一致损失和转换器参数选择,从而避免了图像双向转换模型中转换器效果不稳定所带来的影响。
基于空间分辨率域自适应的无监督遥感图像语义分割方法.pdf
本发明涉及基于空间分辨率域自适应的无监督遥感图像语义分割领域,基于空间分辨率域自适应的无监督遥感图像语义分割方法包括如下步骤:获取源域低分辨率遥感图像数据集和目标域高分辨率遥感图像数据集,分为:图像语义分割训练集和图像语义分割测试集;搭建基于对抗学习的超分辨率‑语义分割多任务网络;搭建好的基于对抗学习的超分辨率网络进行网络预训练;训练基于对抗学习的超分辨率‑语义分割多任务网络;将图像语义分割测试集输入已训练好的基于对抗学习的超分辨率‑语义分割多任务网络生成器得到最终预测结果。
语义分割方法和语义分割装置.pdf
本申请提供了一种语义分割方法和语义分割装置,有利于提高语义分割结果准确率。该方法包括:获取目标图像,该目标图像包括航拍得到的RGB图像和深度图像,该深度图像是根据该RGB图像确定的;将该目标图像输入至语义分割网络,通过该语义分割网络对该目标图像进行特征提取,获取该目标图像的深度信息和语义信息,该特征提取包括细节特征提取、边缘特征提取、深度特征提取以及上下文特征提取;通过该语义分割网络对该深度信息和该语义信息进行特征融合,得到该目标图像的语义分割图像。
基于领域自适应的跨域目标检测方法.pdf
本发明公开一种基于领域自适应的跨域目标检测方法,包括:步骤1,获取包括源域Ds和目标域D<base:Sub>T</base:Sub>的目标检测数据集,进行数据增强和数据集扩充;步骤2,采用扩充后的数据集对CycleGAN网络进行训练并输出生成数据域D<base:Sub>G</base:Sub>;步骤3,构建FasterRCNN网络作为目标检测器,将源域Ds和生成数据域D<base:Sub>G</base:Sub>作为训练集对目标检测器进行训练;步骤4,对目标域D<base:Sub>T</base:Sub>