一种基于卷积神经网络的红外图像目标检测网络压缩方法.pdf
雨巷****怡轩
亲,该文档总共20页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
一种基于卷积神经网络的红外图像目标检测网络压缩方法.pdf
本发明公开了一种基于卷积神经网络的红外图像目标检测网络压缩方法,属于红外图像识别领域。本方法以卷积神经网络为核心,建立一种红外图像目标检测的网络模型压缩框架,网络模型包含了多级特征融合的模块,使小目标检测时能够拥有高分辨率特征的同时保留了浅层的特征信息,使网络模型多红外飞行器目标具有更高泛化能力。在模型训练过程中采用轻量化网络模型处理技术,将网络模型卷积层中权重参数和特征值参数进行定点量化处理,得到识别精度高、资源占用少的检测模型。本发明方法已在红外飞行器目标数据集中完成训练和测试,能够高效检测小尺度红外
基于深度卷积神经网络的遥感图像目标检测方法.docx
基于深度卷积神经网络的遥感图像目标检测方法标题:基于深度卷积神经网络的遥感图像目标检测方法摘要:随着遥感技术的快速发展,大量的遥感图像数据应用于各种领域,如城市规划、环境监测和农业。遥感图像目标检测是从遥感图像中自动提取感兴趣的目标区域的关键任务。本文提出了一种基于深度卷积神经网络的遥感图像目标检测方法,该方法能够准确地检测出遥感图像中的目标,并具有较高的鲁棒性和性能。1.引言近年来,随着深度学习和神经网络的快速发展,目标检测在计算机视觉领域取得了显著的进展。然而,由于遥感图像的高分辨率和复杂背景,传统的
基于卷积神经网络的红外目标检测方法研究的开题报告.docx
基于卷积神经网络的红外目标检测方法研究的开题报告一、研究背景红外目标检测技术是电视监视、反导系统、无人机航空、医学、食品业等众多领域的重要技术之一。它以旁迹捕捉人体或其他物体发出的红外辐射为基础,通过对红外图像的处理和分析获取目标物体的位置、面积等信息,具有成像距离远、无需光源、适应性强等优点。因此在各个领域都有着广泛的应用和发展。而卷积神经网络(CNN)作为一种优秀的图像识别算法,近年来在图像分类、目标检测等领域中占据了主导地位,取得了许多重要进展。因此将CNN应用于红外目标检测中具有重要的研究意义。二
一种基于卷积神经网络自压缩的图像降噪方法及系统.pdf
本发明公开了一种基于卷积神经网络自压缩的图像降噪方法及系统,其中,所述图像降噪方法包括:将待降噪图像输入第一神经网络模型中;采用所述第一神经网络模型中的卷积层对所述待降噪图像进行神经网络隐式信息提取处理,获取待降噪图像的图像轮廓信息;采用所述第一神经网络模型中的降维采样层对所述轮廓图像信息进行降维采样处理,最后输出底层输出图像;将所述底层输出图像输入第二神经网络模型中;在所述第二神经网络模型中对所述底层输出图像进行图像升采样处理,并在所述图像升采样处理过程中同时采用最相邻像素点进行插值处理,输出复原降噪图
一种基于卷积神经网络的图像缺陷检测方法.pdf
本发明公开了一种基于卷积神经网络的图像缺陷检测方法,目标检测技术领域,包括训练阶段和测试阶段;训练阶段:选取Q幅原始的缺陷检测图像及每幅原始的缺陷检测图像对应的真实检测分类图像构成训练集;构建卷积神经网络检测模型;将训练集中的每幅原始的RGB彩色图像进行数据增强,输入到卷积神经网络中进行训练,得到训练集中的每幅原始的缺陷图像对应的缺陷图像的检测结果;测试阶段:取多幅原始的缺陷图像以及相应的真实检测图像作为测试集;将检测的缺陷图像输入到卷积神经网络检测模型中,得到待检测图像对应的边框回归坐标、目标分类结果和