基于卷积神经网络的红外目标检测方法研究的开题报告.docx
快乐****蜜蜂
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
基于卷积神经网络的红外目标检测方法研究的开题报告.docx
基于卷积神经网络的红外目标检测方法研究的开题报告一、研究背景红外目标检测技术是电视监视、反导系统、无人机航空、医学、食品业等众多领域的重要技术之一。它以旁迹捕捉人体或其他物体发出的红外辐射为基础,通过对红外图像的处理和分析获取目标物体的位置、面积等信息,具有成像距离远、无需光源、适应性强等优点。因此在各个领域都有着广泛的应用和发展。而卷积神经网络(CNN)作为一种优秀的图像识别算法,近年来在图像分类、目标检测等领域中占据了主导地位,取得了许多重要进展。因此将CNN应用于红外目标检测中具有重要的研究意义。二
基于卷积神经网络的目标检测方法研究的开题报告.docx
基于卷积神经网络的目标检测方法研究的开题报告一、选题背景随着计算机视觉技术的不断发展,目标检测作为计算机视觉领域的一个重要任务,越来越受到人们的关注。目标检测是指在图像或视频中,自动地识别出感兴趣的物体并给出其在图像中的位置和大小。目标检测在很多领域中都具有重要的应用,如智能交通、安防监控、机器人等。基于深度学习的目标检测方法,可分为两类,即基于区域提议的方法和基于单阶段检测。在基于区域提议的方法中,往往需要利用候选框来提取图像特征,再将特征送入分类器进行分类。而单阶段检测方法则直接从原图上预测出每个物体
基于卷积神经网络的红外目标检测方法研究的任务书.docx
基于卷积神经网络的红外目标检测方法研究的任务书任务书:基于卷积神经网络的红外目标检测方法研究一、任务背景:随着红外技术的不断发展,红外图像在军事、安防等领域中得到了广泛应用,实现了广泛的目标检测和识别。红外目标检测是在红外图像中检测出具有特定表征的目标,如人体、车辆和建筑,是许多领域中的热门研究领域。在红外图像的目标检测中,如何提高目标检测的准确性和速度是一个重要的研究方向。卷积神经网络(CNN)是一种最新的深度学习算法,具有在图像分类、目标检测等任务中优异的性能。本次任务旨在研究基于卷积神经网络的红外目
基于改进卷积神经网络的目标检测研究的开题报告.docx
基于改进卷积神经网络的目标检测研究的开题报告一、研究背景随着图像识别技术的不断进步,目标检测技术的应用越来越广泛,例如自动驾驶、智能监控、工业检测等领域。而卷积神经网络(CNN)在实现目标检测方面具有不可忽视的优势,近年来已经成为目标检测领域的研究热点。然而,传统的卷积神经网络模型在进行目标检测时存在一些问题。例如,传统的卷积神经网络可能会受到物体的大小、姿势和光照等因素的影响,导致模型性能下降。为了提高目标检测的准确率和鲁棒性,需要对传统的卷积神经网络进行改进。因此,本次研究将基于改进卷积神经网络的目标
基于卷积神经网络的视频目标跟踪方法研究的开题报告.docx
基于卷积神经网络的视频目标跟踪方法研究的开题报告一、选题背景及研究意义视频目标跟踪是计算机视觉领域中的一个重要研究问题,其应用广泛,可以用于智能监控、智能交通、视频分析、智能安防、电影特效等多个领域。传统的视频目标跟踪方法通常采用基于特征提取的方法,如颜色特征、纹理特征、形状特征等,但是这些方法往往受到光照变化、目标遮挡、背景复杂、图像模糊等因素的影响而导致跟踪效果不理想。近年来,随着卷积神经网络技术的发展,基于卷积神经网络的视频目标跟踪方法成为了热门研究方向。卷积神经网络具有良好的空间特征提取和特征抽象