一种基于生成式对抗网络的多模态医学图像合成方法.pdf
小忆****ng
亲,该文档总共18页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
一种基于生成式对抗网络的多模态医学图像合成方法.pdf
本发明涉及一种基于生成式对抗网络的多模态医学图像合成方法。所述方法包括:构造模态注意力生成式对抗网络;所述模态注意力生成式对抗网络包括自表示网络和由生成式对抗网络实现的图像转换网络;采用多模态医学图像数据集对所述模态注意力生成式对抗网络进行训练与测试,生成训练完成的模态注意力生成式对抗网络;将已有的多模态医学图像输入至所述训练完成的模态注意力生成式对抗网络,输出目标模态的合成图像。本发明方法用于合成缺失的医学模态图像,能够提高多模态医学图像合成的质量,完整的多模态医学图像有益于医生做出更准确的决策。
基于生成对抗网络的多模态图像融合.pptx
,CONTENTS01.02.生成对抗网络的基本原理生成对抗网络的应用场景生成对抗网络的优势与挑战03.多模态图像融合的基本概念多模态图像融合的方法与技术多模态图像融合的应用领域04.基于生成对抗网络的多模态图像融合方法基于生成对抗网络的多模态图像融合的优势基于生成对抗网络的多模态图像融合的挑战与解决方案05.实验数据集与实验环境实验方法与实验过程实验结果与分析结果比较与讨论06.基于生成对抗网络的多模态图像融合的结论基于生成对抗网络的多模态图像融合的展望感谢您的观看!
基于生成对抗网络的图像合成.docx
基于生成对抗网络的图像合成基于生成对抗网络的图像合成摘要生成对抗网络(GANs)是一种强大的深度学习模型,主要用于图像生成和合成。GANs通过训练一个生成器网络和一个判别器网络,使得两个网络相互博弈,并在博弈中不断优化,以达到生成逼真图像的目的。本论文将探讨基于生成对抗网络的图像合成方法,并介绍相关应用领域和未来发展方向。关键词:生成对抗网络,图像合成,深度学习1.引言图像合成是将多个图像进行融合或生成新的图像,用于增强图像质量或产生新的图像内容。在传统的图像合成方法中,通常需要手工指定合成规则或者使用统
基于生成式对抗网络的图像修复.docx
基于生成式对抗网络的图像修复标题:GeneratingImageRestorationusingGenerativeAdversarialNetworksAbstract:Imagerestorationisafundamentaltaskincomputervision,aimedatrecoveringcorruptedordamagedimagestorestoretheiroriginalappearance.Inrecentyears,generativeadversarialnetworks(
基于生成式对抗网络的裂缝图像修复方法.docx
基于生成式对抗网络的裂缝图像修复方法基于生成式对抗网络的裂缝图像修复方法摘要:裂缝是建筑物、道路或其他基础设施中常见的问题,它们会对结构的完整性和安全性产生严重威胁。为了解决这个问题,本文提出了一种基于生成式对抗网络(GAN)的裂缝图像修复方法。该方法使用了一个由生成器和判别器组成的对抗性网络来生成裂缝修复图像。通过在训练过程中最小化生成器和判别器之间的损失,我们能够有效地学习到修复裂缝的模式和结构。实验结果显示,本文方法在裂缝图像修复方面表现出色,并与传统方法相比具有明显的优势。1.引言裂缝是建筑物和道