预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于生成式对抗网络的图像修复 标题:GeneratingImageRestorationusingGenerativeAdversarialNetworks Abstract: Imagerestorationisafundamentaltaskincomputervision,aimedatrecoveringcorruptedordamagedimagestorestoretheiroriginalappearance.Inrecentyears,generativeadversarialnetworks(GANs)haveshowngreatpotentialinimagegenerationtasks.Inthispaper,weexploretheapplicationofGANsforimagerestoration,specificallyfocusingontherestorationofcorruptedorincompleteimages.Weproposeanovelframeworkthatcombinesageneratornetworkwithadiscriminatornetworktoachievestate-of-the-artimagerestorationresults.Experimentalresultsdemonstratethatourproposedmethodcaneffectivelyenhanceimagerestorationqualityandproducevisuallyappealingandrealisticresults. 1.Introduction Imagerestorationaimstorecoverimagesthatmayhavebeencorruptedbyvariousfactorssuchasnoise,artifacts,ormissinginformation.Traditionalrestorationmethodsareoftenlimitedinhandlingcompleximagedistortionsandmayresultinlossofimagedetailsorintroduceartifacts.WiththeemergenceofGANs,thetaskofimagerestorationhasgainedrenewedattention,astheyhaveshownremarkablesuccessingeneratingrealisticimages.Byleveragingtheadversarialtrainingprocess,GANscangeneratehigh-qualityandvisuallypleasingrestoredimagesbylearningfromalargedatasetofpairedcleanandcorruptedimages. 2.RelatedWork Wereviewtherecentadvancementsinimagerestorationtechniques,includingtraditionalmethodsbasedonfiltering,inpainting,andsuper-resolution,aswellasstate-of-the-artdeeplearning-basedapproaches.WediscussthelimitationsofexistingmethodsandhighlighttheadvantagesofusingGANsforimagerestorationtasks. 3.Methodology WepresentourproposedimagerestorationframeworkbasedonGANs.Ourframeworkconsistsofageneratornetworkthataimstotransformcorruptedimagesintohigh-qualityrestoredimages,andadiscriminatornetworkthatdistinguishesbetweenthegeneratedimagesandthegroundtruthimages.Weintroduceanovellossfunctionthatcombinescontentlossandadversariallosstoguidethegeneratornetworkinproducingrealisticandvisuallycoherentresults.Wealsodiscussthearchitect