预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共21页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2025届北京市首都师范大学附属中学高二数学第一学期期末监测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、若方程表示双曲线,则实数m的取值范围是()A.B.C.D.2、已知,若,则()A.B.C.D.3、已知O为坐标原点,,点P是上一点,则当取得最小值时,点P的坐标为()A.B.C.D.4、设函数,若的整数有且仅有两个,则的取值范围是()A.B.C.D.5、已知是空间的一个基底,若,,若,则()A.B.C.3D.6、已知向量,,则下列向量中,使能构成空间的一个基底的向量是()A.B.C.D.7、“”是“”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件8、直线的倾斜角为()A.1B.-1C.D.9、设为直线上任意一点,过总能作圆的切线,则的最大值为()A.B.1C.D.10、若,则()A.22B.19C.-20D.-19二、填空题(本题共6小题,每题5分,共30分)11、圆锥曲线有良好的光学性质,光线从椭圆的一个焦点发出,被椭圆反射后会经过椭圆的另一个焦点(如左图);光线从双曲线的一个焦点发出,被双曲线反射后的反射光线等效于从另一个焦点射出(如中图).封闭曲线E(如右图)是由椭圆C1:+=1和双曲线C2:-=1在y轴右侧的一部分(实线)围成.光线从椭圆C1上一点P0出发,经过点F2,然后在曲线E内多次反射,反射点依次为P1,P2,P3,P4,…,若P0,P4重合,则光线从P0到P4所经过的路程为_________.12、设f(x)=xlnx,若f′(x0)=2,则x0=________13、曲线在处的切线方程为______.14、椭圆上一点到两个焦点的距离之和等于,则的标准方程为______.15、若直线过圆的圆心,则实数a的值为_________.16、已知双曲线的焦点,过F且斜率为1的直线与双曲线有且只有一个交点,则双曲线的方程为_________三、解答题(本题共5小题,每题12分,共60分)17、如图,已知正方体的棱长为,,分别是棱与的中点.(1)求以,,,为顶点的四面体的体积;(2)求异面直线和所成角的大小.18、茶树根据其茶叶产量可分为优质茶树和非优质茶树,某茶叶种植研究小组选取了甲,乙两块试验田来检验某种茶树在不同的环境条件下的生长情况.研究人员将100株该种茶树幼苗在甲,乙两块试验田中进行种植,成熟后统计每株茶树的茶叶产量,将所得数据整理如下表所示:优质茶树非优质茶树甲试验田a25乙试验田10b已知甲试验田优质茶树的比例为50%(1)求表中a,b的值;(2)根据表中数据判断,是否有99%的把握认为甲,乙两块试验田的环境差异对茶树的生长有影响?附:,其中.0.100.050.01k2.7063.8416.63519、设函数(1)求在处的切线方程;(2)求在上的最大值与最小值20、如图,在棱长为的正方体中,为中点(1)求二面角的大小;(2)探究线段上是否存在点,使得平面?若存在,确定点的位置;若不存在,说明理由21、已知是等差数列,是等比数列,且(1)求,的通项公式;(2)设,求数列的前项和.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:A【解析】方程化为圆锥曲线(椭圆与双曲线)标准方程的形式,然后由方程表示双曲线可得不等关系【详解】解:方程可化为,它表示双曲线,则,解得.故选:A2、答案:B【解析】先求出的坐标,然后由可得,再根据向量数量积的坐标运算求解即可.【详解】因为,,所以,因为,所以,即,解得.故选:B3、答案:A【解析】根据三点共线,可得,然后利用向量的减法坐标运算,分别求得,最后计算,经过化简观察,可得结果.【详解】设,则则∴当时,取最小值为-10,此时点P的坐标为.故选:A【点睛】本题主要考查向量数量积的坐标运算,难点在于三点共线,审清题干,简单计算,属基础题.4、答案:D【解析】等价于,令,,利用导数研究函数的单调性,作出的简图,数形结合只需满足即可.【详解】,即,又,则.令,,,当时,,时,,时,,在单调递减,在单调递增,且,且,,作出函数图象如图所示,若的整数有且仅有两个,即只需满足,即,解得:故选:D5、答案:C【解析】由,可得存在实数,使,然后将代入化简可求得结果【详解】,,因,所以存在实数,使,所以,所以,所以,得,,所以,故选:C6、答案:D【解析】根据向量共面基本定理只需无解即可满足构成空间向量基底,据此检验各选项即可得解.【详解】因为,所以A中的向量不能与,构成基底;因为,所以B中的向量不能与,构成基底;对于,设,则,解得,,所以,故,,为共面向量,所以C中的向量不能与,构成基底;对于,设,则,此方程组无解,所以,,不共面,故D中的向量与,可以构成基底.故选:D7、答案:B【解析】根据充分条件、必要条件的定义判断