预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共22页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024年江苏省盐城市滨海县八滩中学高二数学第一学期期末学业质量监测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、双曲线的左焦点到其渐近线的距离是()A.B.C.D.2、抛物线的准线方程为()A.B.C.D.3、直三棱柱ABC-A1B1C1中,△ABC为等边三角形,AA1=AB,M是A1C1的中点,则AM与平面所成角的正弦值为()A.B.C.D.4、下列命题中的假命题是()A.若log2x<2,则0<x<4B.若与共线,则与的夹角为0°C.已知各项都不为零的数列{an}满足an+1-2an=0,则该数列为等比数列D.点(π,0)是函数y=sinx图象上一点5、点是正方体的底面内(包括边界)的动点.给出下列三个结论:①满足的点有且只有个;②满足的点有且只有个;③满足平面的点的轨迹是线段.则上述结论正确的个数是()A.B.C.D.6、直线与圆的位置关系是()A.相交B.相切C.相离D.都有可能7、某四面体的三视图如图所示,该四面体的体积为()A.B.C.D.8、有甲、乙两个抽奖箱,甲箱中有3张无奖票3张有奖票,乙箱中有4张无奖票2张有奖票,某人先从甲箱中抽出一张放进乙箱,再从乙箱中任意抽出一张,则最后抽到有奖票的概率是()A.B.C.D.9、某产品的销售收入(万元)是产量x(千台)的函数,且函数解析式为,生产成本(万元)是产量x(千台)的函数,且函数解析式为,要使利润最大,则该产品应生产()A.6千台B.7千台C.8千台D.9千台10、已知椭圆:,左、右焦点分别为,过的直线交椭圆于两点,若的最大值为5,则的值是A.1B.C.D.二、填空题(本题共6小题,每题5分,共30分)11、如图,在等腰直角△ABC中,,点P是边AB上异于A、B的一点,光线从点P出发,经BC、CA反射后又回到原点P.若光线QR经过△ABC的内心,则___________.12、如图,正方体的棱长为1,C、D分别是两条棱的中点,A、B、M是顶点,那么点M到截面ABCD的距离是____________.13、已知函数,则曲线在点处的切线方程为______14、将车行的30辆大巴车编号为01,02,…,30,采用系统抽样方法抽取一个容量为3的样本,且在某组随机抽得的一个号码为08,则剩下的两个号码依次是__________(按号码从小到大排列)15、我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来1524石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为_______石16、已知直线被圆截得的弦长等于该圆的半径,则实数_____.三、解答题(本题共5小题,每题12分,共60分)17、已知p:关于x的方程至多有一个实数解,.(1)若命题p为真命题,求实数a的取值范围;(2)若p是q的充分不必要条件,求实数m的取值范围.18、如图,在四棱锥中,平面,底面为菱形,且,,分别为,的中点(Ⅰ)证明:平面;(Ⅱ)点在棱上,且,证明:平面19、已知椭圆的一个顶点为,离心率为(1)求椭圆C的方程;(2)若直线l与椭圆C交于M、N两点,直线BM与直线BN的斜率之积为,证明直线l过定点并求出该定点坐标20、记是等差数列的前项和,若.(1)求数列的通项公式;(2)求使成立的的最小值.21、已知函数在处有极值,且其图象经过点.(1)求的解析式;(2)求在的最值.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:A【解析】求出双曲线焦点坐标与渐近线方程,利用点到直线的距离公式可求得结果.【详解】在双曲线中,,,,所以,该双曲线的左焦点坐标为,渐近线方程为,即,因,该双曲线的左焦点到渐近线的距离为.故选:A2、答案:A【解析】将抛物线的方程化成标准形式,即可得到答案;【详解】抛物线的方程化成标准形式,准线方程为,故选:A.3、答案:B【解析】取的中点,以为原点,所在直线分别为x轴、y轴、z轴,建立空间直角坐标系,即可根据线面角的向量公式求出【详解】如图所示,取的中点,以为原点,所在直线分别为x轴、y轴、z轴,建立空间直角坐标系,不妨设,则,所以,平面的一个法向量为设AM与平面所成角为,向量与所成的角为,所以,即AM与平面所成角的正弦值为故选:B4、答案:B【解析】四个选项中需要分别利用对数函数的性质,向量共线的定义,等比数列的定义以及三角函数图像判断,根据题意结合知识点,即可得出结果.【详解】选项A,由于此对数函数单调递增,并且结合对数函数定义域,即可求得结果,所以是真命题;选项B,向量共线,夹角可能是或,所以是假命题;选项C,将式子变形可得,符合等比数列定义,所以是真命题;选项D,将点代入解析式,等号成立,所以是真命题;故选B.【点睛】本题考查命题真假的判定,根据题意结合各知识点即可判断真假,需要熟练掌握对数函