预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共20页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024年江苏省盐城市滨海县八滩中学高二数学第一学期期末联考模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、已知直线m经过,两点,则直线m的斜率为()A.-2B.C.D.22、设、分别为具有公共焦点与的椭圆和双曲线的离心率,为两曲线的一个公共点,且满足,则的值为()A.B.C.D.3、已知圆柱的底面半径是1,高是2,那么该圆柱的侧面积是()A.2B.C.D.4、设等比数列的前项和为,且,则()A.B.C.D.5、如果在一实验中,测得的四组数值分别是,则y与x之间的回归直线方程是()A.B.C.D.6、“”是“”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件7、过点且平行于直线的直线方程为()A.B.C.D.8、已知抛物线C:的焦点为F,过点P(-1,0)且斜率为的直线l与抛物线C相交于A,B两点,则()A.B.14C.D.159、“,”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件10、已知直线在两个坐标轴上的截距之和为7,则实数m的值为()A.2B.3C.4D.5二、填空题(本题共6小题,每题5分,共30分)11、已知,,则以AB为直径的圆的方程为___________.12、一条直线经过,并且倾斜角是直线的倾斜角的2倍,则直线的方程为__________13、已知,则正整数___________.14、若向量,且夹角的余弦值为________15、斐波那契数列,又称“兔子数列”,由数学家斐波那契研究兔子繁殖问题时引入.已知斐波那契数列满足,,,若记,,则________.(用,表示)16、设O为坐标原点,F为双曲线的焦点,过F的直线l与C的两条渐近线分别交于A,B两点.若,且的内切圆的半径为,则C的离心率为____________三、解答题(本题共5小题,每题12分,共60分)17、已知某中学高二物化生组合学生的数学与物理的水平测试成绩抽样统计如下表:若抽取了名学生,成绩分为A(优秀),B(良好),C(及格)三个等级,设,分别表示数学成绩与物理成绩,例如:表中物理成绩为A等级的共有(人),数学成绩为B等级且物理成绩为C等级的共有8人,已知与均为A等级的概率是0.07(1)设在该样本中,数学成绩的优秀率是30%,求,的值;(2)已知,,求数学成绩为A等级的人数比C等级的人数多的概率18、已知三棱柱中,,,平面ABC,,E为AB中点,D为上一点(1)求证:;(2)当D为中点时,求平面ADC与平面所成角的正弦值19、(1)已知双曲线的离心率为2,求E的渐近线方程;(2)已知F是抛物线的焦点,是C上一点,且,求C的方程.20、2017年厦门金砖会晤期间产生碳排放3095吨.2018年起厦门市政府在下潭尾湿地生态公园通过种植红树林的方式中和会晤期间产生的碳排放,拟用20年时间将碳排放全部吸收,实现“零碳排放”目标,向世界传递低碳,环保办会的积极信号,践行金砖国家倡导的可持续发展精神据研究估算,红树林的年碳吸收量随着林龄每年递增2%,2018年公园已有的红树林年碳吸收量为130吨,如果从2019年起每年新种植红树林若干亩,新种植的红树林当年的年碳吸收量为m()吨.2018年起,红树林的年碳吸收量依次记,,,…(1)①写出一个递推公式,表示与之间的关系;②证明:是等比数列,并求的通项公式;(2)为了提前5年实现厦门会晤“零碳排放”的目标,m的最小值为多少?参考数据:,,21、城南公园种植了4棵棕榈树,各棵棕榈树成活与否是相互独立的,成活率为p,设为成活棕榈树的株数,数学期望.(1)求p的值并写出的分布列;(2)若有2棵或2棵以上的棕榈树未成活,则需要补种,求需要补种棕榈树的概率.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:A【解析】根据斜率公式求得正确答案.【详解】直线的斜率为:.故选:A2、答案:A【解析】设椭圆的长半轴长为,双曲线的实半轴长为,不妨设,利用椭圆和双曲线的定义可得出,再利用勾股定理可求得结果.【详解】设椭圆的长半轴长为,双曲线的实半轴长为,不妨设,由椭圆和双曲线的定义可得,所以,,设,因为,则,由勾股定理得,即,整理得,故.故选:A.3、答案:D【解析】由圆柱的侧面积公式直接可得.【详解】故选:D4、答案:C【解析】根据给定条件求出等比数列公比q的关系,再利用前n项和公式计算得解.【详解】设等比数列的的公比为q,由得:,解得,所以.故选:C5、答案:B【解析】根据已知数据求样本中心点,由样本中心点在回归直线上,将其代入各选项的回归方程验证即可.【详解】由题设,,因为回归直线方程过样本点中心,A:,排除;B:,满足;C:,排除;D:,排除.故选:B6、答案:B【解析】根据充分条件、必要条件的定义判断即可;【详解】