预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共21页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024年浙江省杭州地区七校高二数学第二学期期末复习检测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、已知P是椭圆上的一点,是椭圆的两个焦点且,则的面积是()A.B.2C.D.12、函数在上的极大值点为()A.B.C.D.3、阿基米德既是古希腊著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆的中心为原点,焦点、在轴上,椭圆的面积为,且离心率为,则的标准方程为()A.B.C.D.4、已知数列满足,,则的最小值为()A.B.C.D.5、已知的二项展开式的各项系数和为32,则二项展开式中的系数为A5B.10C.20D.406、如果直线与直线垂直,那么的值为()A.B.C.D.27、已知双曲线:的左、右焦点分别为,,点在双曲线上.若为钝角三角形,则的取值范围是A.B.C.D.8、瑞士数学家欧拉(LeonhardEuler)1765年在其所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上.后人称这条直线为欧拉线.已知△ABC的顶点,其欧拉线方程为,则顶点C的坐标是()A.()B.()C.()D.()9、在数列中,,则()A.2B.C.D.10、已知是定义在上的奇函数,对任意两个不相等的正数、都有,记,,,则()A.B.C.D.二、填空题(本题共6小题,每题5分,共30分)11、在等比数列中,已知,则__________12、已知数列的前n项和为,且满足通项公式,则________13、已知函数,则______14、已知点F是抛物线的焦点,点,点P为抛物线上的任意一点,则的最小值为_________.15、已知直线l是抛物线()的准线,半径为的圆过抛物线的顶点O和焦点F,且与l相切,则抛物线C的方程为___________;若A为C上一点,l与C的对称轴交于点B,在中,,则的值为___________.16、设f(x)=xlnx,若f′(x0)=2,则x0=________三、解答题(本题共5小题,每题12分,共60分)17、设正项数列的前项和为,已知,(1)求数列的通项公式;(2)数列满足,数列的前项和为,若不等式对一切恒成立,求的取值范围18、已知圆C:,圆C与x轴交于A,B两点(1)求直线y=x被圆C所截得的弦长;(2)圆M过点A,B,且圆心在直线y=x+1上,求圆M的方程19、如图,在三棱柱中,侧棱垂直于底面,分别是的中点(1)求证:平面平面;(2)求证:平面;(3)求三棱锥体积20、已知圆心C的坐标为,且是圆C上一点(1)求圆C的标准方程;(2)过点的直线l被圆C所截得的弦长为,求直线l的方程21、已知函数在时有极值0.(1)求函数的解析式;(2)记,若函数有三个零点,求实数的取值范围.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:A【解析】设,先求出m、n,再利用面积公式即可求解.【详解】在中,设,则,解得:.因为,所以,所以的面积是.故选:A2、答案:C【解析】求出函数的导数,利用导数确定函数的单调性,即可求出函数的极大值点【详解】,∴当时,,单调递减,当时,,单调递增,当时,,单调递减,∴函数在的极大值点为故选:C3、答案:A【解析】设椭圆方程为,解方程组即得解.【详解】解:设椭圆方程为,由题意可知,椭圆的面积为,且、、均为正数,即,解得,因为椭圆的焦点在轴上,所以的标准方程为.故选:A.4、答案:C【解析】采用叠加法求出,由可得,结合对勾函数性质分析在或6取到最小值,代值运算即可求解.【详解】因为,所以,,,,式相加可得,所以,,当且仅当取到,但,,所以时,当时,,,所以的最小值为.故选:C5、答案:B【解析】首先根据二项展开式的各项系数和,求得,再根据二项展开式的通项为,求得,再求二项展开式中的系数.【详解】因为二项展开式的各项系数和,所以,又二项展开式的通项为=,,所以二项展开式中的系数为.答案选择B【点睛】本题考查二项式展开系数、通项等公式,属于基础题6、答案:A【解析】根据两条直线垂直列方程,化简求得的值.【详解】由于直线与直线垂直,所以.故选:A7、答案:C【解析】根据双曲线的几何性质,结合余弦定理分别讨论当为钝角时的取值范围,根据双曲线的对称性,可以只考虑点在双曲线上第一象限部分即可.【详解】由题:双曲线:的左、右焦点分别为,,点在双曲线上,必有,若为钝角三角形,根据双曲线的对称性不妨考虑点在双曲线第一象限部分:当为钝角时,在中,设,有,,即,,所以;当时,所在直线方程,所以,,,根据图象可得要使,点向右上方移动,此时,综上所述:的取值范围是.故选:C【点睛】此题考查双曲线中焦点三角形相关计算,关键在于根据几何意义结合特殊情况分类讨论,体现数形结合思想.8、答案:A【解析】根