预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共23页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024-2025学年陕西省西安市长安区一中高二数学期末学业质量监测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、渐近线方程为的双曲线的离心率是()A.1B.C.D.22、如图,双曲线,是圆的一条直径,若双曲线过,两点,且离心率为,则直线的方程为()A.B.C.D.3、双曲线的渐近线方程和离心率分别是A.B.C.D.4、某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待18秒才出现绿灯的概率为()AB.C.D.5、双曲线C:的右焦点为F,过点F作双曲线C的两条渐近线的垂线,垂足分别为H1,H2.若,则双曲线C的离心率为()A.B.C.D.26、在等腰中,在线段斜边上任取一点,则线段的长度大于的长度的概率()AB.C.D.7、已知抛物线的焦点为,抛物线的焦点为,点在上,且,则直线的斜率为A.B.C.D.8、命题“,使得”的否定形式是A.,使得B.,使得C.,使得D.,使得9、已知双曲线满足,且与椭圆有公共焦点,则双曲线的方程为()A.B.C.D.10、已知曲线与直线总有公共点,则m的取值范围是()A.B.C.D.二、填空题(本题共6小题,每题5分,共30分)11、曲线在处的切线与坐标轴围成的三角形面积为___________.12、已知,求_____________.13、已知为平面的一个法向量,为直线的方向向量.若,则__________.14、数列的前n项和满足:,则________15、设,若,则S=________.16、根据抛物线的光学性质可知,从抛物线的焦点发出的光线经该抛物线反射后与对称轴平行,一条平行于对称轴的光线经该抛物线反射后会经过抛物线的焦点.如图所示,从沿直线发出的光线经抛物线两次反射后,回到光源接收器,则该光线经过的路程为___________.三、解答题(本题共5小题,每题12分,共60分)17、已知三个条件①圆心在直线上;②圆的半径为2;③圆过点在这三个条件中任选一个,补充在下面的问题中,并作答(注:如果选择多个条件分别解答,按第一个解答计分)(1)已知圆过点且圆心在轴上,且满足条件________,求圆的方程;(2)在(1)的条件下,直线与圆交于、两点,求弦长的最小值及相应的值18、在中,其顶点坐标为.(1)求直线的方程;(2)求的面积.19、从椭圆上一点P向x轴作垂线,垂足恰为左焦点,A是椭圆C与x轴正半轴的交点,直线AP的斜率为,若椭圆长轴长为8(1)求椭圆C的方程;(2)点Q为椭圆上任意一点,求面积的最大值20、设函数(1)若,求的单调区间和极值;(2)在(1)的条件下,证明:若存在零点,则在区间上仅有一个零点;(3)若存在,使得,求的取值范围21、如图,在四棱锥中,底面为直角梯形,,,平面底面,为的中点,是棱上的点,,,.(1)求证:平面平面;(2)若,求异面直线与所成角余弦值;(3)在线段上是否存在一点,使二面角大小为?若存在,请指出点的位置,若不存在,请说明理由.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:B【解析】根据双曲线渐近线方程可确定a,b的关系,进而求得离心率.【详解】因为双曲线近线方程为,故双曲线为等轴双曲线,则a=b,故离心率为,则,故选:B.2、答案:D【解析】由离心率求得,设出两点坐标代入双曲线方程相减求得直线斜率与的关系得结论【详解】由题意,则,即,由圆方程知,设,,则,,又,两式相减得,所以,直线方程为,即故选:D3、答案:A【解析】先根据双曲线的标准方程,求得其特征参数的值,再利用双曲线渐近线方程公式和离心率定义分别计算即可.【详解】双曲线的,双曲线的渐近线方程为,离心率为,故选A.【点睛】本题主要考查双曲线的渐近线及离心率,属于简单题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解4、答案:B【解析】由几何概型公式求解即可.【详解】红灯持续时间为40秒,则至少需要等待18秒才出现绿灯的概率为,故选:B5、答案:D【解析】将条件转化为该双曲线的一条渐近线的倾斜角为,可得,由离心率公式即可得解.【详解】由题意,(为坐标原点),所以该双曲线的一条渐近线的倾斜角为,所以,即,所以离心率.故选:D.6、答案:C【解析】利用几何概型的长度比值,即可计算.【详解】设直角边长,斜边,则线段的长度大于的长度的概率.故选:C7、答案:B【解析】根据抛物线的定义,求得p的值,即可得抛物线,的标准方程,求得抛物线的焦点坐标后,再根据斜率公式求解.【详解】因为,所以,解得,所以直线的斜率为.故选B.【点睛】本题考查了抛物线的定义的应用,考查