预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共21页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024年江苏省射阳县实验初中高二数学第二学期期末复习检测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、下列说法或运算正确的是()A.B.用反证法证明“一个三角形至少有两个锐角”时需设“一个三角形没有锐角”C.“,”的否定形式为“,”D.直线不可能与圆相切2、双曲线的离心率是,则双曲线的渐近线方程是()A.B.C.D.3、某程序框图如图所示,该程序运行后输出的值是()A.B.C.D.4、饕餮(tāotiè)纹,青铜器上常见的花纹之一,盛行于商代至西周早期,最早出现在距今五千年前长江下游地区的良渚文化玉器上.有人将饕餮纹的一部分画到了方格纸上,如图所示,每个小方格的边长为,有一点从点出发每次向右或向下跳一个单位长度,且向右或向下跳是等可能性的,那么它经过次跳动后恰好是沿着饕餮纹的路线到达点的概率为()A.B.C.D.5、已知,若对于且都有成立,则实数的取值范围是()A.B.C.D.6、已知随圆与双曲线相同的焦点,则椭圆和双曲线的离心,分别为()A.B.C.D.7、已知椭圆的左、右焦点分别为,,点P是椭圆上一点且的最大值为,则椭圆离心率为()A.B.C.D.8、曲线的离心率为()A.B.C.D.9、“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.即不充分也不必要条件10、已知抛物线,过点作抛物线的两条切线,点为切点.若的面积不大于,则的取值范围是()A.B.C.D.二、填空题(本题共6小题,每题5分,共30分)11、复数(其中i为虚数单位)的共轭复数______12、某天上午只排语文、数学、体育三节课,则体育不排在第一节课的概率为_________13、某人有楼房一栋,室内面积共计,拟分割成两类房间作为旅游客房,大房间每间面积为,可住游客4名,每名游客每天的住宿费100元;小房间每间面积为,可住游客2名,每名游客每天的住宿费150元;装修大房间每间需要3万元,装修小房间每间需要2万元.如果他只能筹款25万元用于装修,且假定游客能住满客房,则该人一天能获得的住宿费的最大值为___________元.14、在长方体中,设,,则异面直线与所成角的大小为______15、若分别是平面的法向量,且,,,则的值为________.16、已知实数x,y满足方程,则的最大值为_________三、解答题(本题共5小题,每题12分,共60分)17、已知为数列的前n项和,,且,,其中为常数.(1)求证:数列为等差数列;(2)是否存在,使得是等差数列?并说明理由.18、如图,在四棱锥中,平面ABCD,,,且,,.(1)求证:平面PAC;(2)已知点M是线段PD上的一点,且,当三棱锥的体积为1时,求实数的值.19、已知各项为正数的等比数列中,,.(1)求数列通项公式;(2)设,求数列的前n项和.20、设椭圆的左、右焦点分别为,.点满足.(1)求椭圆的离心率;(2)设直线与椭圆相交于,两点,若直线与圆相交于,两点,且,求椭圆的方程.21、已知,,且,求实数的取值范围.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:D【解析】对于A:可以解决;对于B:“一个三角形至少由两个锐角”的反面是“只有一个锐角或没有锐角”;对于C:全称否定必须是全部否定;对于D:需要观察出所给直线是过定点的.【详解】A:,故错误;B:“一个三角形至少由两个锐角”的反面是“只有一个锐角或没有锐角”,所以用反证法时应假设只有一个锐角和没有锐角两种情况,故错误;C:的否定形式是,故错误;D:直线是过定点(-1,0),而圆,圆心为(2,0),半径为4,定点(-1,0)到圆心的距离为2-(-1)=3<4,故定点在圆内,故正确;故选:D.2、答案:B【解析】利用双曲线的离心率,以及渐近线中,关系,结合找关系即可【详解】解:,又因为在双曲线中,,所以,故,所以双曲线的渐近线方程为,故选:B3、答案:B【解析】模拟程序运行后,可得到输出结果,利用裂项相消法即可求出答案.【详解】模拟程序运行过程如下:0),判断为否,进入循环结构,1),判断为否,进入循环结构,2),判断为否,进入循环结构,3),判断为否,进入循环结构,……9),判断为否,进入循环结构,10),判断为是,故输出,故选:B.【点睛】本题主要考查程序框图,考查裂项相消法,难度不大.一般遇见程序框图求输出结果时,常模拟程序运行以得到结论.4、答案:B【解析】本题首先可根据题意列出次跳动的所有基本事件,然后找出沿着饕餮纹的路线到达点的事件,最后根据古典概型的概率计算公式即可得出结果.【详解】点从点出发,每次向右或向下跳一个单位长度,次跳动的所有基本事件有:(右,右,右)、(右,右,下)、(右,下,右)、(下,右,右)、(右,下,下)、(下,右,下)、(下,下,右)、(下,下,下),