预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共24页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024-2025学年广东省中山市高二数学第二学期期末质量检测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、若(为虚数单位),则复数在复平面内的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2、《九章算术》与《几何原本》并称现代数学的两大源泉.在《九章算术》卷五商功篇中介绍了羡除(此处是指三面为等腰梯形,其他两侧面为直角三角形的五面体)体积的求法.在如图所示的羡除中,平面是铅垂面,下宽,上宽,深,平面BDEC是水平面,末端宽,无深,长(直线到的距离),则该羡除的体积为()A.B.C.D.3、已知随机变量服从正态分布,且,则()A.0.1B.0.2C.0.3D.0.44、设抛物线C:的焦点为,准线为.是抛物线C上异于的一点,过作于,则线段的垂直平分线()A.经过点B.经过点C.平行于直线D.垂直于直线5、一直线过点,则此直线的倾斜角为()A.45°B.135°C.-45°D.-135°6、已知、是椭圆的两个焦点,P为椭圆C上一点,且,若的面积为9,则的值为()A.1B.2C.3D.47、在直三棱柱中,,,则直线与所成角的大小为()A.30°B.60°C.120°D.150°8、已知,,且,则向量与的夹角为()A.B.C.D.9、已知点O为坐标原点,抛物线C:的焦点为F,点T在抛物线C的准线上,线段FT与抛物线C的交点为W,,则()A.1B.C.D.10、和的等差中项与等比中项分别为()A.,B.2,C.,D.1,二、填空题(本题共6小题,每题5分,共30分)11、已知数列的前n项和为,则取得最大值时n的值为__________________12、设与是定义在同一区间上的两个函数,若函数在上有两个不同的零点,则称与在上是“关联函数”.若与在上是“关联函数”,则实数的取值范围是____________.13、已知数列an满足,则__________14、若、是双曲线的左右焦点,过的直线与双曲线的左右两支分别交于,两点.若为等边三角形,则双曲线的离心率为________.15、如图,一个酒杯的内壁的轴截面是抛物线的一部分,杯口宽cm,杯深8cm,称为抛物线酒杯.①在杯口放一个表面积为的玻璃球,则球面上的点到杯底的最小距离为______cm;②在杯内放入一个小的玻璃球,要使球触及酒杯底部,则玻璃球的半径的取值范围为______(单位:cm)16、椭圆的长轴长为______三、解答题(本题共5小题,每题12分,共60分)17、{}是公差为1的等差数列,.正项数列{}的前n项和为,且.(1)求数列{}和数列}的通项公式;(2)在和之间插入1个数,使,,成等差数列,在和之间插入2个数,,使,,,成等差数列,…,在和之间插入n个数,,…,,使,,,…,,成等差数列.①记,求{}的通项公式;②求的值.18、在①成等差数列;②成等比数列;③这三个条件中任选一个,补充在下面的问题中,并对其求解.问题:已知为数列的前项和,,且___________.(1)求数列的通项公式;(2)记,求数列的前项和.注:如果选择多个条件分别解答,按第一个解答计分.19、已知圆心为的圆过原点,且直线与圆相切于点.(1)求圆的方程;(2)已知过点的直线的斜率为,且直线与圆相交于两点.①若,求弦的长;②若圆上存在点,使得成立,求直线的斜率.20、已知数列的前n项和为,且.(1)求的通项公式;.(2)求数列的前n项和.21、设函数.(1)求在处的切线方程;(2)求的极小值点和极大值点.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:A【解析】根据复数运算法则求出z=a+bi形式,根据复数的几何意义即可求解.【详解】,z对应的点在第一象限.故选:A2、答案:C【解析】在,上分别取点,,使得,连接,,,把几何体分割成一个三棱柱和一个四棱锥,然后由棱柱、棱锥体积公式计算【详解】如图,在,上分别取点,,使得,连接,,,则三棱柱是斜三棱柱,该羡除的体积三棱柱四棱锥.故选:C【点睛】思路点睛:本题考查求空间几何体的体积,解题思路是观察几何体的结构特征,合理分割,将不规则几何体体积的计算转化为锥体、柱体体积的计算.考查了空间想象能力、逻辑思维能力、运算求解能力3、答案:A【解析】利用正态分布的对称性和概率的性质即可【详解】由,且则有:根据正态分布的对称性可知:故选:A4、答案:A【解析】依据题意作出焦点在轴上的开口向右的抛物线,根据垂直平分线的定义和抛物线的定义可知,线段的垂直平分线经过点,即可求解.【详解】如图所示:因为线段的垂直平分线上的点到的距离相等,又点在抛物线上,根据定义可知,,所以线段的垂直平分线经过点.故选:A.5、答案:A【解析】根据斜率公式求得直线的斜率,得到,即可求解.【详解】设直线的倾斜角为,由斜率公式,可得,即,