预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共21页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024-2025学年内蒙古通辽实验中学高二数学第一学期期末经典试题含解析一、单选题(本题共10小题,每题5分,共50分)1、已知对称轴为坐标轴的双曲线的两渐近线方程为,若双曲线上有一点,使,则双曲线的焦点()A.在轴上B.在轴上C.当时在轴上D.当时在轴上2、已知点F是双曲线的左焦点,点E是该双曲线的右顶点,过F作垂直于x轴的直线与双曲线交于G、H两点,若是锐角三角形,则该双曲线的离心率e的取值范围是()A.B.C.D.3、若方程表示双曲线,则的取值范围是()A.或B.C.或D.4、如果椭圆的弦被点平分,那么这条弦所在的直线的方程是()A.B.C.D.5、在等差数列中,,且构成等比数列,则公差等于()A.0B.3C.D.0或36、(2016新课标全国Ⅱ理科)已知F1,F2是双曲线E:的左,右焦点,点M在E上,MF1与轴垂直,sin,则E的离心率为A.B.C.D.27、已知向量,,且,则实数等于()A.1B.2C.D.8、设,分别为具有公共焦点与椭圆和双曲线的离心率,为两曲线的一个公共点,且满足,则的值为A.B.1C.2D.不确定9、已知圆C的圆心在直线上,且与直线相切于点,则圆C方程为()A.B.C.D.10、圆与直线的位置关系为()A.相切B.相离C.相交D.无法确定二、填空题(本题共6小题,每题5分,共30分)11、已知函数,则的导函数______.12、如图,已知底面为正方形且各侧棱均相等的四棱锥可绕着任意旋转,平面,分别是的中点,,,点在平面上的射影为点,则当最大时,二面角的大小是________13、直线l过抛物线的焦点F,与抛物线交于A,B两点,与其准线交于点C,若,则直线l的斜率为______.14、如图,将一个正方体沿相邻三个面的对角线截出一个棱锥,若该棱锥的体积为,则该正方体的边长为___________.15、若,满足约束条件,则的最小值为__________16、函数是R上的单调递增函数,则a的取值范围是______三、解答题(本题共5小题,每题12分,共60分)17、已知椭圆的右顶点为,上顶点为.离心率为,.(1)求椭圆的标准方程;(2)若,是椭圆上异于长轴端点的两点(斜率不为0),已知直线,且,垂足为,垂足为,若,且的面积是面积的5倍,求面积的最大值.18、已知函数,求(1)(2)(3)曲线在处的切线方程19、已知椭圆的离心率为,右焦点到上顶点的距离为.(1)求椭圆的方程;(2)斜率为2的直线经过椭圆的左焦点,且与椭圆相交于两点,求的面积.20、已知函数(1)求函数单调区间;(2)函数在区间上的最小值小于零,求a的取值范围21、设函数(1)若曲线在点处的切线方程为,求;(2)求函数的单调区间参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:B【解析】设出双曲线的一般方程,利用题设不等式,令二者平方,整理求得的,进而可判断出焦点的位置【详解】渐近线方程为,,平方,两边除,,,双曲线的焦点在轴上.故选B.【点睛】本题考查已知双曲线的渐近线方程求双曲线的方程,考查对双曲线标准方程的理解与运用,求解时要注意焦点落在轴或轴的特点,考查学生分析问题和解决问题的能力2、答案:B【解析】根据是等腰三角形且为锐角三角形,得到,即,解得离心率范围.【详解】,当时,,,不妨取,,是等腰三角形且为锐角三角形,则,即,,即,,解得,故.故选:B.3、答案:A【解析】由和的分母异号可得【详解】由题意,解得或故选:A4、答案:B【解析】设该弦所在直线与椭圆的两个交点分别为,,则,利用点差法可得答案.【详解】设该弦所在直线与椭圆的两个交点分别为,,则因为,两式相减可得,,即由中点公式可得,所以,即,所以AB所在直线方程为,即故选:B5、答案:D【解析】根据,且构成等比数列,利用“”求解.【详解】设等差数列的公差为d,因为,且构成等比数列,所以,解得,故选:D6、答案:A【解析】由已知可得,故选A.考点:1、双曲线及其方程;2、双曲线的离心率.【方法点晴】本题考查双曲线及其方程、双曲线的离心率.,涉及方程思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型.由已知可得,利用双曲线的定义和双曲线的通径公式,可以降低计算量,提高解题速度.7、答案:C【解析】利用空间向量垂直的坐标表示计算即可得解【详解】因向量,,且,则,解得,所以实数等于.故选:C8、答案:C【解析】根据题意,设它们共同的焦距为2c、椭圆的长轴长2a、双曲线的实轴长为2m,由椭圆和双曲线的定义及勾弦定理建立关于a、c、m的方程,联解可得a2+m2=2c2,再根据离心率的定义求解【详解】由题意设焦距为2c,椭圆的长轴长2a,双曲线的实轴长为2m,设P在双曲线的右支上,由双曲线的定义得|PF1|﹣|PF2|