预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共22页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024-2025学年广东省深圳市福田区耀华实验学校华文部高二数学期末联考试题含解析一、单选题(本题共10小题,每题5分,共50分)1、已知两条异面直线的方向向量分别是,,则这两条异面直线所成的角满足()A.B.C.D.2、设为双曲线与椭圆的公共的左右焦点,它们在第一象限内交于点是以线段为底边的等腰三角形,若椭圆的离心率范围为,则双曲线的离心率取值范围是()A.B.C.D.3、某地政府为落实疫情防控常态化,不定时从当地780名公务员中,采用系统抽样的方法抽取30人做核酸检测.把这批公务员按001到780进行编号,若018号被抽中,则下列编号也被抽中的是()A.076B.122C.390D.5224、直线的一个法向量为()A.B.C.D.5、已知,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.即不充分又不必要条件6、如图,在棱长为的正方体中,为线段的中点,为线段的中点,则直线到直线的距离为()A.B.C.D.7、在空间直角坐标系中,若,,则点B的坐标为()A.(3,1,﹣2)B.(-3,1,2)C.(-3,1,-2)D.(3,-1,2)8、二项式的展开式中,各项二项式系数的和是()A.2B.8C.16D.329、若函数有零点,则实数的取值范围是()A.B.C.D.10、在棱长为1的正方体中,是线段上一个动点,则下列结论正确的有()A.不存在点使得异面直线与所成角为90°B.存在点使得异面直线与所成角为45°C.存在点使得二面角的平面角为45°D.当时,平面截正方体所得的截面面积为二、填空题(本题共6小题,每题5分,共30分)11、已知直线与直线垂直,则__________12、已知直线与平行,则实数的值为_____________.13、已知,若共线,m+n=__.14、已知数列满足,,若,则_______15、如图,SD是球O的直径,A、B、C是球O表面上的三个不同的点,,当三棱锥的底面是边长为3的正三角形时,则球O的半径为______.16、若“,”是真命题,则实数m的取值范围________.三、解答题(本题共5小题,每题12分,共60分)17、如图,在直三棱柱中,,是中点.(1)求点到平面的的距离;(2)求平面与平面夹角的余弦值;18、新冠肺炎疫情期间,某地为了解本地居民对当地防疫工作的满意度,从本地居民中随机抽取了1500名居民进行评分(满分100分),根据调查数据制成如下表格和频率分布直方图.满意度评分满意度等级不满意基本满意满意非常满意(1)求a的值;(2)定义满意度指数,若,则防疫工作需要进行调整,否则不需要调整,根据所学知识判断该区防疫工作是否需要进行调整?19、已知椭圆的左、右焦点分别为,若焦距为4,点P是椭圆上与左、右顶点不重合的点,且的面积最大值.(1)求椭圆的方程;(2)过点的直线交椭圆于点、,且满足(为坐标原点),求直线的方程.20、已知等差数列的前项和为,,.(1)求的通项公式;(2)设数列的前项和为,用符号表示不超过x的最大数,当时,求的值.21、已知函数在处有极值.(1)求的值;(2)求函数在上的最大值与最小值.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:D【解析】利用向量夹角余弦公式直接求解【详解】解:两条异面直线的方向向量分别是,,这两条异面直线所成的角满足:,,故选:D2、答案:A【解析】设椭圆的标准方程为,根据椭圆和双曲线的定义可得到两图形离心率之间的关系,再根据椭圆的离心率范围可得双曲线的离心率取值范围.【详解】设椭圆的标准方程为,,则有已知,两式相减得,即,,因为,解得故选:A.3、答案:B【解析】根据系统抽样的特点,写出组数与对应抽取编号的关系式,即可判断和选择.【详解】根据题意,780名公务员中,采用系统抽样的方法抽取30人,则需要分为组,每组人;设第组抽取的编号为,故可设,又第一组抽中号,故可得,解得故,当时,.故选:.4、答案:B【解析】直线化为,求出直线的方向向量,因为法向量与方向向量垂直,逐项验证可得答案.【详解】直线的方向向量为,化为,直线的方向向量为,因为法向量与方向向量垂直,设法向量为,所以,由于,A错误;,故B正确;,故C错误;,故D错误;故选:B.5、答案:B【解析】根据充分条件和必要条件的定义判断即可求解.【详解】由可得或,所以由得不出,故充分性不成立,由可得,故必要性成立,所以“”是“”的必要不充分条件,故选:B.6、答案:C【解析】连接,,,,在平面中,作,为垂足,将两平行线的距离转化成点到直线的距离,结合余弦定理即同角三角函数基本关系,求得,因此可得,进而可得直线到直线的距离;【详解】解:如图,连接,,,,在平面中,作,为垂足,因为,分别为,的中点,因为,,所以,所以,同理,所以四边形是平行四边形,所以,所以