预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共24页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024-2025学年北京市首都师范大学附属中学高二数学第一学期期末检测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、如图,在长方体中,,,则直线和夹角余弦值为()A.B.C.D.2、在直三棱柱中,底面是等腰直角三角形,,则与平面所成角的正弦值为()A.B.C.D.3、抛物线的焦点到准线的距离为()A.B.C.D.4、矿山爆破时,在爆破点处炸开的矿石的运动轨迹可看作是不同的抛物线,根据地质、炸药等因素可以算出这些抛物线的范围,这个范围的边界可以看作一条抛物线,叫“安全抛物线”,如图所示.已知某次矿山爆破时的安全抛物线的焦点为,则这次爆破时,矿石落点的最远处到点的距离为()A.B.2C.D.5、“”是“方程为双曲线方程”的()A充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6、已知直线,,若,则实数()A.B.C.1D.27、展开式的第项为()A.B.C.D.8、焦点坐标为,(0,4),且长半轴的椭圆方程为()A.B.C.D.9、已知双曲线左右焦点为,,过的直线与双曲线的右支交于P,Q两点,且,若为以Q为顶角的等腰三角形,则双曲线的离心率为()A.B.C.D.10、已知,则条件“”是条件“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件.二、填空题(本题共6小题,每题5分,共30分)11、如图,一个酒杯的内壁的轴截面是抛物线的一部分,杯口宽cm,杯深8cm,称为抛物线酒杯.①在杯口放一个表面积为的玻璃球,则球面上的点到杯底的最小距离为______cm;②在杯内放入一个小的玻璃球,要使球触及酒杯底部,则玻璃球的半径的取值范围为______(单位:cm)12、已知=(3,a+b,a﹣b)(a,b∈R)是直线l的方向向量,=(1,2,3)是平面α的法向量,若l⊥α,则5a+b=__13、已知春季里,甲地每天下雨的概率为,乙地每天下雨的概率大于0,且甲、乙两地下雨相互独立,则春季的一天里,已知乙地下雨的条件下,甲地也下雨的概率为___________.14、在正项等比数列{an}中,若,与的等差中项为12,则等于_______.15、数列的前项和为,则的通项公式为________.16、已知内角A,B,C的对边为a,b,c,已知,且,则c的最小值为__________.三、解答题(本题共5小题,每题12分,共60分)17、在数列中,,点在直线上.(1)求的通项公式;(2)记的前项和为,且,求数列的前项和.18、在①,②这两个条件中任选一个,补充在下面的问题中,并作答.设数列的前项和为,且__________.(1)求数列的通项公式;(2)若,求数列的前项和.19、已知数列满足,,,n为正整数.(1)证明:数列是等比数列,并求通项公式;(2)证明:数列中的任意三项,,都不成等差数列;(3)若关于正整数n的不等式的解集中有且仅有三个元素,求实数m的取值范围;20、2021年11月初某市出现新冠病毒感染者,该市教育局部署了“停课不停学”的行动,老师们立即开展了线上教学.某中学为了解教学效果,于11月30日复课第一天安排了测试,数学教师为了调查高二年级学生这次测试的数学成绩与每天在线学习数学的时长之间的相关关系,对在校高二学生随机抽取45名进行调查,了解到其中有25人每天在线学习数学的时长不超过1小时,并得到如下的统计图:(1)根据统计图填写下面列联表,是否有95%的把握认为“高二学生的这次摸底考试数学成绩与其每天在线学习数学的时长有关”;数学成绩不超过120分数学成绩超过120分总计每天在线学习数学的时长不超过1小时25每天在线学习数学的时长超过1小时总计45(2)从被抽查的,且这次数学成绩超过120分的学生中,按分层抽样的方法抽取5名,再从这5名同学中随机抽取2名,求这两名同学中至多有一名每天在线学习数学的时长超过1小时的概率附:,其中.参考数据:0.1000.0500.0100.0012.7063.8416.63510.82821、已知与定点,的距离比为的点P的轨迹为曲线C,过点的直线l与曲线C交于M,N两点.(1)求曲线C的轨迹方程;(2)若,求.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:D【解析】如图建立空间直角坐标系,分别求出的坐标,由空间向量夹角公式即可求解.【详解】如图:以为原点,分别以,,所在的直线为,,轴建立空间直角坐标系,则,,,,所以,,所以,所以直线和夹角的余弦值为,故选:D.2、答案:C【解析】取的中点,连接,易证平面,进一步得到线面角,再解三角形即可.【详解】如图,取的中点,连接,三棱柱为直三棱柱,则平面,又平面,所以,又由题意可知为等腰直角三角形,且为斜边的中点,从而,而平面,平面,且,所以平面,则为与平面所成的角.