预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共20页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024年陕西韩城高二数学第一学期期末复习检测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、已知椭圆的左右焦点分别为,,过C上的P作y轴的垂线,垂足为Q,若四边形是菱形,则C的离心率为()A.B.C.D.2、已知双曲线的左、右焦点分别为,,为坐标原点,为双曲线在第一象限上的点,直线,分别交双曲线的左,右支于另一点,,若,且,则双曲线的离心率为()A.B.3C.2D.3、“且”是“”的()A.充分不必要条件B.必要不充分条件C充要条件D.既不充分也不必要条件4、在空间直角坐标系中,方程所表示的图形是()A圆B.椭圆C.双曲线D.球5、与直线关于轴对称的直线的方程为()A.B.C.D.6、《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上两人与下三人等,问各得几何?”其意思为:“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得之和与丙、丁、戊所得之和相同,且是甲、乙、丙、丁、戊所得以此为等差数列,问五人各得多少钱?”(“钱”是古代一种重量单位),这个问题中戊所得为()A.钱B.钱C.钱D.钱7、设为椭圆上一点,,为左、右焦点,且,则()A.为锐角三角形B.为钝角三角形C.为直角三角形D.,,三点构不成三角形8、设α,β是两个不同的平面,m,n是两条不重合的直线,下列命题中为真命题的是()A如果,,n∥β,那么B.如果,,,那么α∥βC.如果m∥n,,,那么α∥βD.如果m∥n,,,那么9、已知直线与平行,则的值为()A.B.C.D.10、如果,那么下列不等式成立的是()A.B.C.D.二、填空题(本题共6小题,每题5分,共30分)11、双曲线的离心率为__________12、某市有30000人参加阶段性学业水平检测,检测结束后的数学成绩X服从正态分布,若,则成绩在140分以上的大约为______人13、已知满足的双曲线(a,b>0,c为半焦距)为黄金双曲线,则黄金双曲线的离心率为______14、给出下列命题:①若两条不同的直线同时垂直于第三条直线,则这两条直线互相平行;②若两个不同的平面同时垂直于同一条直线,则这两个平面互相平行;③若两条不同的直线同时垂直于同一个平面,则这两条直线互相平行;④若两个不同的平面同时垂直于第三个平面,则这两个平面互相垂直.其中所有正确命题的序号为________.15、在长方体中,设,,则异面直线与所成角的大小为______16、数列中,,,,则______三、解答题(本题共5小题,每题12分,共60分)17、已知等差数列中,首项,公差,且数列的前项和为(1)求和;(2)设,求数列的前项和18、在平面直角坐标系中,圆C:,直线l:(1)若直线l与圆C相切于点N,求切点N的坐标;(2)若,直线l上有且仅有一点A满足:过点A作圆C的两条切线AP、AQ,切点分别为P,Q,且使得四边形APCQ为正方形,求m的值19、已知函数(1)求的单调区间;(2)若,求的最大值与最小值20、已知椭圆长轴长为4,A,B分别为左、右顶点,P为椭圆上不同于A,B的动点,且点在椭圆上,其中e为椭圆的离心率(1)求椭圆的标准方程;(2)直线AP与直线(m为常数)交于点Q,①当时,设直线OQ的斜率为,直线BP的斜率为.求证:为定值;②过Q与PB垂直的直线l是否过定点?如果是,请求出定点坐标;如果不是,请说明理由21、已知函数.(1)当时,求曲线在点处的切线方程;(2)当时,设,求函数的单调区间.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:C【解析】根据题意求出P点坐标,代入椭圆方程中,可整理得到关于a,c的等式,进一步整理为关于e的方程,解得答案.【详解】如图示:由题意可知,因为四边形是菱形,所以,则,所以P点坐标为,将P点坐标为代入得:,整理得,故,由于,解得,所以,故选:C.2、答案:D【解析】由双曲线的定义可设,,由平面几何知识可得四边形为平行四边形,三角形,用余弦定理,可得,的方程,再由离心率公式可得所求值【详解】由双曲线的定义可得,由,可得,,结合双曲线性质可以得到,而,结合四边形对角线平分,可得四边形为平行四边形,结合,故,对三角形,用余弦定理,得到,结合,可得,,,代入上式子中,得到,即,结合离心率满足,即可得出,故选:D【点睛】本题考查求双曲线的离心率,熟记双曲线的简单性质即可,属于常考题型.3、答案:A【解析】按照充分必要条件的判断方法判断,“且”能否推出“”,以及“”能否推出“且”,判断得到正确答案,【详解】当且时,成立,反过来,当时,例:,不能推出且.所以“且”是“”的充分不必要条件.故选:A【点睛】本题考查充分不必要条件的判断,重点考查基本判断方法,属于基础题型.4、答案:D【解析】方程表示空间中的点到坐标原点的距离为2,从而可知图形的形状【详