预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共22页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024年甘肃省天水市甘谷县高二数学第一学期期末质量跟踪监视模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、已知等比数列{an}中,,,则()A.B.1C.D.42、若方程表示焦点在轴上的双曲线,则角所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限3、中心在原点的双曲线C的右焦点为,实轴长为2,则双曲线C的方程为()A.B.C.D.4、圆与圆的位置关系是()A.相交B.相离C.内切D.外切5、如图,O是坐标原点,P是双曲线右支上的一点,F是E的右焦点,延长PO,PF分别交E于Q,R两点,已知QF⊥FR,且,则E的离心率为()A.B.C.D.6、“”是“直线与互相垂直”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7、已知、是椭圆的两个焦点,P为椭圆C上一点,且,若的面积为9,则的值为()A.1B.2C.3D.48、已知椭圆与双曲线有相同的焦点、,椭圆的离心率为,双曲线的离心率为,点P为椭圆与双曲线的交点,且,则当取最大值时的值为()A.B.C.D.9、等比数列中,,,则()A.B.C.D.10、已知抛物线上一点M与焦点间的距离是3,则点M的纵坐标为()A.1B.2C.3D.4二、填空题(本题共6小题,每题5分,共30分)11、已知,在直线上存在点P,使,则m的最大值是_______.12、设a为实数,若直线与直线平行,则a值为______.13、在报名的3名男教师和3名女教师中,选取3人参加义务献血,要求男、女教师都有,则不同的选取方法数为__________.(结果用数值表示)14、数列的前项和为,则_________________.15、抛物线C:的焦点F,其准线过(-3,3),过焦点F倾斜角为的直线交抛物线于A,B两点,则p=___________;弦AB的长为___________.16、已知圆被轴截得的弦长为4,被轴分成两部分的弧长之比为1∶2,则圆心的轨迹方程为______,若点,,则周长的最小值为______三、解答题(本题共5小题,每题12分,共60分)17、已知函数,.(1)当时,求曲线在点处的切线方程;(2)若在区间上有唯一的零点.(ⅰ)求的取值范围;(ⅱ)证明:.18、已知椭圆与直线相切,点G为椭圆上任意一点,,,且的最大值为3(1)求椭圆C的标准方程;(2)设直线与椭圆C交于不同两点E,F,点O为坐标原点,且,当的面积取最大值时,求的取值范围19、已知四边形是空间直角坐标系中的一个平行四边形,且,,(1)求点的坐标;(2)求平行四边形的面积20、已知数列是正项数列,,且.(1)求数列的通项公式;(2)设,数列的前项和为,若对恒成立,求实数的取值范围.21、在平面直角坐标系中,△的三个顶点分别是点.(1)求△的外接圆O的标准方程;(2)过点作直线平行于直线,判断直线与圆O的位置关系,并说明理由.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:D【解析】设公比为,然后由已知条件结合等比数列的通项公式列方程求出,从而可求出,【详解】设公比为,因为等比数列{an}中,,,所以,所以,解得,所以,得故选:D2、答案:D【解析】根据题意得出的符号,进而得到的象限.【详解】由题意,,所以在第四象限.故选:D.3、答案:D【解析】根据条件,求出,的值,结合双曲线的方程进行求解即可【详解】解:设双曲线的方程为由已知得:,,再由,,双曲线的方程为:故选:D4、答案:A【解析】求出两圆的圆心及半径,求出圆心距,从而可得出结论.【详解】解:圆的圆心为,半径为,圆圆心为,半径为,则两圆圆心距,因为,所以两圆相交.故选:A.5、答案:B【解析】令双曲线E的左焦点为,连线即得,设,借助双曲线定义及直角用a表示出|PF|,,再借助即可得解.【详解】如图,令双曲线E的左焦点为,连接,由对称性可知,点线段中点,则四边形是平行四边形,而QF⊥FR,于是有是矩形,设,则,,,在中,,解得或m=0(舍去),从而有,中,,整理得,,所以双曲线E的离心率为故选:B6、答案:A【解析】根据两直线垂直的性质求出,再结合充分条件和必要条件的定义即可得出答案.【详解】解:因为直线与互相垂直,所以,解得或,所以“”是“直线与互相垂直”的充分不必要条件.故选:A.7、答案:C【解析】根据椭圆定义,和条件列式,再通过变形计算求解.【详解】由条件可知,,即,解得:.故选:C【点睛】本题考查椭圆的定义,焦点三角形的性质,重点考查转化与变形,计算能力,属于基础题型.8、答案:D【解析】由椭圆的定义及双曲线的定义结合余弦定理可得,,的关系,由此可得,再利用重要不等式求最值,并求此时的的值.【详解】设为第一象限的交点,、,则、,解得、,在中,由余弦定理得:,∴,∴,∴,∴,∴,,即,当且仅