预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共19页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024年浙江省十校联盟选考学考高二数学期末经典模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、若方程表示双曲线,则()A.B.C.D.2、已知函数f(x)=x(lnx-ax)有两个极值点,则实数a的取值范围是()A.(-∞,0)B.C.(0,1)D.(0,+∞)3、现有一根金锤,长5尺,头部1尺,重4斤,尾部1尺,重2斤,若该金锤从头到尾,每一尺的重量构成等差数列,该金锤共重()斤A.6B.7C.9D.154、若,则()A.0B.1C.D.25、若双曲线(,)的一条渐近线经过点,则双曲线的离心率为()A.B.C.D.26、如图,在棱长为的正方体中,为线段的中点,为线段的中点,则直线到直线的距离为()A.B.C.D.7、已知函数的导函数为,且满足,则()A.B.C.D.8、已知等比数列的各项均为正数,且,则()A.B.C.D.9、在中,角,,所对的边分别为,,,若,则的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定10、已知,,,,则下列不等关系正确的是()A.B.C.D.二、填空题(本题共6小题,每题5分,共30分)11、“五经”是《诗经》、《尚书》、《礼记》、《周易》、《春秋》的合称,贵为中国文化经典著作,所载内容及哲学思想至今仍具有积极意义和参考价值.某校计划开展“五经”经典诵读比赛活动,某班有、两位同学参赛,比赛时每位同学从这本书中随机抽取本选择其中的内容诵读,则、两位同学抽到同一本书的概率为______.12、近年来,我国外卖业发展迅猛,外卖小哥穿梭在城市的大街小巷成为一道道亮丽的风景线.他们根据外卖平台提供的信息到外卖店取单,某外卖小哥每天来往于r个外卖店(外卖店的编号分别为1,2,…,r,其中),约定:每天他首先从1号外卖店取单,称为第1次取单,之后,他等可能的前往其余个外卖店中的任何一个店取单,称为第2次取单,依此类推.假设从第2次取单开始,他每次都是从上次取单的店之外的个外卖店取单.设事件表示“第k次取单恰好是从1号店取单()”,是事件发生的概率,显然,,则______,与的关系式为______13、已知一组样本数据5、6、a、6、8的极差为5,若,则其方差为________.14、直线与圆相交于A,B两点,则______15、已知,用割线逼近切线的方法可以求得___________.16、抛物线的焦点到准线的距离是______.三、解答题(本题共5小题,每题12分,共60分)17、已知过点的圆的圆心M在直线上,且y轴被该圆截得的弦长为4(1)求圆M的标准方程;(2)设点,若点P为x轴上一动点,求的最小值,并写出取得最小值时点P的坐标18、已知抛物线C的顶点在坐标原点,准线方程为(1)求抛物线C的标准方程;(2)若AB是过抛物线C的焦点F的弦,以弦AB为直径的圆与直线的位置关系是什么?先给出你的判断结论,再给出你的证明,并作出必要的图形19、已知是等差数列的前n项和,且,(1)求数列的通项公式;(2)令,求数列的前n项和20、已知等差数列满足;正项等比数列满足,,(1)求数列,的通项公式;(2)数列满足,的前n项和为,求的最大值.21、已知数列的前n项和为,且满足(1)证明数列是等比数列;(2)若数列满足,证明数列的前n项和参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:C【解析】根据曲线方程表示双曲线方程有,即可求参数范围.【详解】由题设,,可得.故选:C.2、答案:B【解析】函数f(x)=x(lnx﹣ax),则f′(x)=lnx﹣ax+x(﹣a)=lnx﹣2ax+1,令f′(x)=lnx﹣2ax+1=0得lnx=2ax﹣1,函数f(x)=x(lnx﹣ax)有两个极值点,等价于f′(x)=lnx﹣2ax+1有两个零点,等价于函数y=lnx与y=2ax﹣1的图象有两个交点,在同一个坐标系中作出它们的图象(如图)当a=时,直线y=2ax﹣1与y=lnx的图象相切,由图可知,当0<a<时,y=lnx与y=2ax﹣1的图象有两个交点则实数a的取值范围是(0,)故选B3、答案:D【解析】设该等差数列为,其公差为,根据题意和等差数列的性质可得,进而求出结果.【详解】设该等差数列为,其公差为,由题意知,,由,解得,所以.故选:D4、答案:D【解析】由复数的乘方运算求,再求模即可.【详解】由题设,,故2.故选:D5、答案:A【解析】先求出渐近线方程,进而将点代入直线方程得到a,b关系,进而求出离心率.【详解】由题意,双曲线的渐近线方程为:,而一条渐近线过点,则,.故选:A.6、答案:C【解析】连接,,,,在平面中,作,为垂足,将两平行线的距离转化成点到直线的距离,结合余弦定理即同角三角函数基本关系,求得,因此可得,进而可得直线到直线的距离;【详解】解:如图,连接,,,,在