预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共24页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024年河南省联盟高二数学第二学期期末教学质量检测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、在等差数列{an}中,已知a1=2,a2+a3=13,则a4+a5+a6等于()A.40B.42C.43D.452、直线的倾斜角为()A.B.C.D.3、已知圆:,是直线的一点,过点作圆的切线,切点为,,则的最小值为()A.B.C.D.4、已知是椭圆上的一点,则点到两焦点的距离之和是()A.6B.9C.14D.105、数学家欧拉在1765年发现,任意三角形的外心、重心、垂心位于同一条直线上,这条直线称为欧拉线.已知的顶点,,若其欧拉线的方程为,则顶点的坐标为()A.B.C.D.6、等差数列中,若,,则等于()A.B.C.D.7、已知抛物线的焦点为,为坐标原点,点在抛物线上,且,点是抛物线的准线上的一动点,则的最小值为().A.B.C.D.8、已知分别是椭圆的左,右焦点,点M是椭圆C上的一点,且的面积为1,则椭圆C的短轴长为()A.1B.2C.D.49、直线与圆相切,则实数等于()A.或B.或C.3或5D.5或310、在正方体中,P,Q两点分别从点B和点出发,以相同的速度在棱BA和上运动至点A和点,在运动过程中,直线PQ与平面ABCD所成角的变化范围为A.B.C.D.二、填空题(本题共6小题,每题5分,共30分)11、在空间直角坐标系中,点关于原点的对称点为点,则___________.12、类比教材中推导球体积公式的方法,试计算椭圆T:绕y轴旋转一周后所形成的旋转体(我们称为橄榄球)的体积为________.13、若,满足约束条件,则的最大值为_____________14、瑞士数学家欧拉(Euler)1765年在所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.已知的顶点,,,则欧拉线的方程为______15、已知数列的前项和为,且满足,则______.16、在长方体中,设,,则异面直线与所成角的大小为______三、解答题(本题共5小题,每题12分,共60分)17、已知三角形内角所对的边分别为,且C为钝角.(1)求cosA;(2)若,,求三角形的面积.18、已知空间内不重合的四点A,B,C,D的坐标分别为,,,,且(1)求k,t的值;(2)求点B到直线CD的距离19、某企业新研发了一种产品,产品的成本由原料成本及非原料成本组成.每件产品的非原料成本(元)与生产该产品的数量(千件)有关,经统计得到如下数据:x12345678y56.53122.7517.815.9514.51312.5根据以上数据绘制了散点图观察散点图,两个变量间关系考虑用反比例函数模型和指数函数模型分别对两个变量的关系进行拟合.已求得用指数函数模型拟合的回归方程为,与x的相关系数.(1)用反比例函数模型求y关于x的回归方程;(2)用相关系数判断上述两个模型哪一个拟合效果更好(精确到0.001),并用其估计产量为10千件时每件产品非原料成本;(3)根据企业长期研究表明,非原料成本y服从正态分布,用样本平均数作为的估计值,用样本标准差s作为的估计值,若非原料成本y在之外,说明该成本异常,并称落在之外的成本为异样成本,此时需寻找出现异样成本的原因.利用估计值判断上述非原料成本数据是否需要寻找出现异样成本的原因?参考数据(其中):0.340.1151.531845777.55593.0630.70513.9参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别为:,,相关系数.20、已知函数(1)讨论函数的单调性;(2)若函数有两个零点,,证明:21、在等差数列中,(1)求数列的通项公式;(2)设,求参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:B【解析】根据已知求出公差即可得出.【详解】设等差数列的公差为,因为,,所以,则.故选:B.2、答案:D【解析】由直线斜率概念可写出倾斜角的正切值,进而可求出倾斜角.【详解】因为直线的斜率为,所以倾斜角.故选D【点睛】本题主要考查直线的倾斜角,由斜率的概念,即可求出结果.3、答案:A【解析】根据题意,为四边形的面积的2倍,即,然后利用切线长定理,将问题转化为圆心到直线的距离求解.【详解】圆:的圆心为,半径,设四边形的面积为,由题设及圆的切线性质得,,∵,∴,圆心到直线的距离为,∴的最小值为,则的最小值为,故选:A4、答案:A【解析】根据椭圆的定义,可求得答案.【详解】由可知:,由是椭圆上的一点,则点到两焦点的距离之和为,故选:A5、答案:A【解析】设,计算出重心坐标后代入欧拉方程,再求出外心坐标,根据外心的性质列出关于的方程,最后联立解方程即可.【详解】设,由重心坐标公式得,三角形的重心为,,代入欧拉线方程得:,整理得: