预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共24页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024年江苏省南通市海安高级中学高二数学第二学期期末经典模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、某次数学考试试卷评阅采用“双评+仲裁”的方式,规则如下:两位老师独立评分,称为一评和二评,当两者所评分数之差的绝对值小于或等于分时,取两者平均分为该题得分;当两者所评分数之差的绝对值大于分时,再由第三位老师评分,称之为仲裁,取仲裁分数和一、二评中与之接近的分数的平均分为该题得分.如图所示,当,,时,则()A.B.C.或D.2、(文科)已知点为曲线上的动点,为圆上的动点,则的最小值是A.3B.5C.D.3、椭圆的左右焦点分别为,是上一点,轴,,则椭圆的离心率等于()A.B.C.D.4、等比数列中,,,则()A.B.C.D.5、下列结论正确的是()A.若,则B.若,则C.若,则D.若,则6、以下四个命题中,正确的是()A.若,则三点共线B.C.为直角三角形的充要条件是D.若为空间的一个基底,则构成空间的另一个基底7、为了解一片大约一万株树木的生长情况,随机测量了其中100株树木的底部周长(单位:㎝).根据所得数据画出的样本频率分布直方图如图,那么在这片树木中,底部周长小于110㎝的株树大约是()A.3000B.6000C.7000D.80008、若空间中n个不同的点两两距离都相等,则正整数n的取值A.至多等于3B.至多等于4C.等于5D.大于59、已知函数,在定义域内任取一点,则使的概率是()A.B.C.D.10、学校为了解学生在课外读物方面的支出情况,抽取了n位同学进行调查,结果显示这些同学的支出都在(单位:元)内,其中支出在(单位:元)内的同学有67人,其频率分布直方图如图所示,则n的值为()A.100B.120C.130D.390二、填空题(本题共6小题,每题5分,共30分)11、已知为抛物线上的动点,,,则的最小值为________.12、已知定点,,P是椭圆上的动点,则的的最小值为______.13、美学四大构件是:史诗、音乐、造型(绘画、建筑等)和数学.素描是学习绘画的必要一步,它包括明暗素描和结构素描,而学习几何体结构素描是学习素描最重要的一步.某同学在画切面圆柱体(用与圆柱底面不平行的平面去截圆柱,底面与截面之间的部分叫做切面圆柱体,原圆柱的母线被截面所截剩余的部分称为切面圆柱体的母线)的过程中,发现“切面”是一个椭圆,若切面圆柱体的最长母线与最短母线所确定的平面截切面圆柱体得到的截面图形是有一个底角为45°的直角梯形(如图所示),则该椭圆的离心率为_____.14、在的展开式中项的系数为______.(结果用数值表示)15、已知椭圆交轴于A,两点,点是椭圆上异于A,的任意一点,直线,分别交轴于点,,则为定值.现将双曲线与椭圆类比得到一个真命题:若双曲线交轴于A,两点,点是双曲线上异于A,的任意一点,直线,分别交轴于点,,则为定值___16、当曲线与直线有两个不同的交点时,实数k的取值范围是____________三、解答题(本题共5小题,每题12分,共60分)17、已知椭圆过点,离心率为(1)求椭圆的标准方程;(2)过椭圆的上顶点作直线l交抛物线于A,B两点,O为坐标原点①求证:;②设OA,OB分别与椭圆相交于C,D两点,过点O作直线CD的垂线OH,垂足为H,证明:为定值18、已知抛物线的焦点为,点在第一象限且为抛物线上一点,点在点右侧,且△恰为等边三角形(1)求抛物线的方程;(2)若直线与交于两点,向量的夹角为(其中为坐标原点),求实数的取值范围.19、在数列中,,点在直线上.(1)求的通项公式;(2)记的前项和为,且,求数列的前项和.20、已知公差不为零的等差数列的前项和为,,,成等比数列且满足________.请在①;②;③,这三个条件中任选一个补充在上面题干中,并回答以下问题.(1)求数列的通项公式;(2)设,求数列的前项和.21、.在直角坐标系中,点,直线的参数方程为(为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为,直线与曲线相交于A,B两点(1)求曲线的直角坐标方程和直线的普通方程;(2)若,求值参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:B【解析】按照框图考虑成立和不成立即可求解.【详解】因为,,,所以输入,当成立时,,即,解得,,满足条件;当不成立时,,即,解得,,不满足条件;故.故选:B.2、答案:A【解析】数形结合分析可得,当时能够取得的最小值,根据点到圆心的距离减去半径求解即可.【详解】由对勾函数的性质,可知,当且仅当时取等号,结合图象可知当A点运动到时能使点到圆心的距离最小,最小为4,从而的最小值为.故选:A【点睛】本题考查两动点间距离的最值问题,考查转化思想与数形结合思想,属于中档题.3、答案:A【解析】在中