预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共22页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024年山东省泰安市东平县数学八上期末教学质量检测模拟试题含解析注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、单选题(本题共10小题,每题3分,共30分)1、如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为()A.BD=CEB.AD=AEC.DA=DED.BE=CD2、下列四个图形中,是轴对称图形的有()A.4个B.3个C.2个D.1个3、如果一条直线经过不同的三点,,,那么直线经过()A.第二、四象限B.第一、二、三象限C.第一、三象限D.第二、三、四象限4、已知实数x,y满足|x﹣4|+(y﹣8)2=0,则以x,y的值为两边长的等腰三角形的周长是()A.20或16B.20C.16D.以上答案均不对5、点P(-2,-3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为()A.(-3,0)B.(-1,6)C.(-3,-6)D.(-1,0)6、两个一次函数与,它们在同一直角坐标系中的图象可能是()A.B.C.D.7、PM2.5是大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为()A.0.25×10﹣5B.0.25×10﹣6C.2.5×10﹣5D.2.5×10﹣68、如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3B.4C.5D.69、下列运算正确的是(A.B.C.D.10、下列多项式中,能分解因式的是()A.B.C.D.二、填空题(本题共6小题,每题3分,共18分)11、点(-2,1)点关于x轴对称的点坐标为___;关于y轴对称的点坐标为__.12、如图,,于,于,且,则________.13、如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“”方向排列,如,,,,,根据这个规律,第个点的坐标为______.14、计算:2a﹒a2=________.15、如图,△ABC是等边三角形,D是BC延长线上一点,DE⊥AB于点E,EF⊥BC于点F.若CD=3AE,CF=6,则AC的长为_____.16、分解因式:ax2-9a=.三、解答题(本题共6小题,每题12分,共72分)17、如图1,△ABC中,AD是∠BAC的平分线,若AB=AC+CD,那么∠ACB与∠ABC有怎样的数量关系呢?(1)通过观察、实验提出猜想:∠ACB与∠ABC的数量关系,用等式表示为:.(2)小明把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:如图2,延长AC到F,使CF=CD,连接DF.通过三角形全等、三角形的性质等知识进行推理,就可以得到∠ACB与∠ABC的数量关系.想法2:在AB上取一点E,使AE=AC,连接ED,通过三角形全等、三角形的性质等知识进行推理,就可以得到∠ACB与∠ABC的数量关系.请你参考上面的想法,帮助小明证明猜想中∠ACB与∠ABC的数量关系(一种方法即可).18、若,求的值.19、已知,如图所示,在中,.(1)作的平分线交于点;(要求:尺规作图,保留作图痕迹,不写作法.)(2)若,,求的长.20、(1)计算:.(2)先化简,再求值:,其中:.21、平面直角坐标系中,三个顶点的坐标为.(1)直接写出关于轴对称的点的坐标:;;;(2)若各顶点的横坐标不变,纵坐标都乘以,请直接写出对应点,,的坐标,并在坐标系中画出.22、尺规作图:如图,要在公路旁修建一个货物中转站,分别向、两个开发区运货.(1)若要求货站到、两个开发区的距离相等,那么货站应建在那里?(2)若要求货站到、两个开发区的距离和最小,那么货站应建在那里?(分别在图上找出点,并保留作图痕迹.)参考答案一、单选题(本题共10小题,每题3分,共30分)1、答案:C【分析】根据全等三角形的判定与性质,等边对等角的性质对各选项分析判断后利用排除法求解.【详解】解:A、添加BD=CE,可以利用“边角边”证明△ABD和△ACE全等,再根据全等三角形对应角相等得到∠DAB=∠EAC,故本选项错误;B、添加AD=AE,根据等边对等角可得∠ADE=∠AED,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠DAB=∠EAC,故本选项错误;C、添加DA=DE无法求出∠DAB=∠EAC,故本选项正确;D、添加BE=CD可以利用“边角边”证明△