预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共19页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024年山东省德州市临邑县数学八上期末经典模拟试题含解析注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、单选题(本题共10小题,每题3分,共30分)1、如图,在等边中,平分交于点,点E、F分别是线段BD,BC上的动点,则的最小值等于()A.B.C.D.2、如果一个多边形的每个内角的度数都是108°,那么这个多边形的边数是()A.3B.4C.5D.63、下列说法不正确的是()A.一组邻边相等的矩形是正方形B.对角线相等的菱形是正方形C.对角线互相垂直的矩形是正方形D.有一个角是直角的平行四边形是正方形4、在下列说法中:①有一个外角是120°的等腰三角形是等边三角形.②有两个外角相等的等腰三角形是等边三角形.③有一边上的高也是这边上的中线的等腰三角形是等边三角形.④三个外角都相等的三角形是等边三角形.其中正确的有()A.1个B.2个C.3个D.4个5、已知方程组,则的值是()A.﹣2B.2C.﹣4D.46、下列命题是假命题的是A.同旁内角互补,两直线平行B.若两个数的绝对值相等,则这两个数也相等C.平行于同一条直线的两条直线也互相平行D.全等三角形的周长相等7、某电子元件厂准备生产4600个电子元件,甲车间独立生产了一半后,由于要尽快投入市场,乙车间也加入该电子元件的生产,若乙车间每天生产的电子元件是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x个,根据题意可得方程为A.B.C.D.8、把△ABC各顶点的横坐标都乘以﹣1,纵坐标都不变,所得图形是下列答案中的()A.B.C.D.9、若是完全平方式,则的值为()A.3或B.7或C.5D.710、计算的结果是()A.B.C.D.二、填空题(本题共6小题,每题3分,共18分)11、如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为.12、在平面直角坐标系中,点A(2,3)与点B关于x轴对称,则点B的坐标为.13、式子在实数范围内有意义的条件是__________.14、若,则等于______.15、等腰三角形中,两条边长分别为4cm和5cm,则此三角形的周长为____cm.16、把多项式因式分解的结果是__________.三、解答题(本题共6小题,每题12分,共72分)17、拖拉机开始工作时,油箱中有油30L,每小时耗油5L.(1)写出油箱中的剩余测量Q(L)与工作时间t(h)之间的函数表达式,并求出自变量t的取值范围;(2)当拖拉机工作4h时,油箱内还剩余油多少升?18、已知:如图一次函数y1=-x-2与y2=x-4的图象相交于点A.(1)求点A的坐标;(2)若一次函数y1=-x-2与y2=x-4的图象与x轴分别相交于点B、C,求△ABC的面积.(3)结合图象,直接写出y1>y2时x的取值范围.19、如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.20、解方程:21、如图,△ABC中,AD是角平分线,点G在CA的延长线上,GE交AB于F,交BC于点E,并且∠G=∠AFG.求证:AD∥EF.22、如图1,在边长为3的等边中,点从点出发沿射线方向运动,速度为1个单位/秒,同时点从点出发,以相同的速度沿射线方向运动,过点作交射线于点,连接交射线于点.(1)如图1,当时,求运动了多长时间?(2)如图1,当点在线段(不考虑端点)上运动时,是否始终有?请说明理由;(3)如图2,过点作,垂足为,当点在线段(不考虑端点)上时,的长始终等于的一半;如图3,当点运动到的延长线上时,的长是否发生变化?若改变,请说明理由;若不变,求出的长.参考答案一、单选题(本题共10小题,每题3分,共30分)1、答案:A【分析】从已知条件结合图形认真思考,通过构造全等三角形,利用三角形的三边的关系确定线段和的最小值.【详解】解:如图,在BA上截取BG=BF,∵∠ABC的平分线交AC于点D,∴∠GBE=∠FBE,在△GBE与△FBE中,∴△GBE≌△FBE(SAS),∴EG=EF.∴CE+EF=CE+EG≥CG.如下图示,当有最小值时,即当CG是点C到直线AB的垂线段时,的最小值是又∵是等边三角形,是的角平分线,∴,∴,故选:A.本题考查了轴对称的应用,通过构造全等三角形,把进行转化是解题的关键.2