预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共24页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024年天津市南开中学高二数学第二学期期末质量检测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、阿基米德(公元前287年~公元前212年)不仅是著名物理学家,也是著名的数学家,他利用“逼近法”得到的椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆的对称轴为坐标轴,焦点在轴上,且椭圆的离心率为,面积为,则椭圆的标准方程为()AB.C.D.2、数列1,6,15,28,45,…中的每一项都可用如图所示的六边形表示出米,故称它们为六边形数,那么第11个六边形数为()A.153B.190C.231D.2763、已知双曲线:的左、右焦点分别为,,过点且斜率为的直线与双曲线在第二象限的交点为,若,则双曲线的离心率是()AB.C.D.4、圆()上点到直线的最小距离为1,则A.4B.3C.2D.15、已知,是双曲线的左、右焦点,点A是的左顶点,为坐标原点,以为直径的圆交的一条渐近线于、两点,以为直径的圆与轴交于两点,且平分,则双曲线的离心率为()A.B.2C.D.36、已知三棱锥O—ABC,点M,N分别为线段AB,OC的中点,且,,,用,,表示,则等于()A.B.C.D.7、如图,在长方体中,,,则直线和夹角余弦值为()A.B.C.D.8、设,,,则下列不等式中一定成立的是()A.B.C.D.9、函数在处的切线方程为()A.B.C.D.10、某班进行了一次数学测试,全班学生的成绩都落在区间内,其成绩的频率分布直方图如图所示,若该班学生这次数学测试成绩的中位数的估计值为,则的值为()A.B.C.D.二、填空题(本题共6小题,每题5分,共30分)11、一道数学难题,在半小时内,甲能解决的概率是,乙能解决的概率是,两人试图独立地在半小时内解决它,则问题得到解决的概率是________.12、若向量,且夹角的余弦值为________13、在数列中,,,则数列中最大项的数值为__________14、设函数f(x)在R上满足f(x)+xf′(x)>0,若a=(30.3)f(30.3),b=(logπ3)·f(logπ3),则a与b的大小关系为________15、圆锥的高为1,底面半径为,则过圆锥顶点的截面面积的最大值为____________16、已知是双曲线上的一点,是上的两个焦点,若,则的取值范围是_______________三、解答题(本题共5小题,每题12分,共60分)17、已知函数.(1)若在处取得极值,求在处的切线方程;(2)讨论的单调性;(3)若函数在上无零点,求实数的取值范围.18、已知抛物线过点,O为坐标原点(1)求焦点的坐标及其准线方程;(2)抛物线C在点A处的切线记为l,过点A作与切线l垂直的直线,与抛物线C的另一个交点记为B,求的面积19、设函数(1)若,求函数的单调区间;(2)若函数有两个不同的零点,求实数的取值范围20、已知等比数列满足,.(Ⅰ)求的通项公式;(Ⅱ)若,设(),记数列的前n项和为,求.21、已知圆.(1)若直线与圆相交于两点,弦的中点为,求直线的方程;(2)若斜率为1的直线被圆截得的弦为,以为直径的圆经过圆的圆心,求直线的方程.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:C【解析】由题意,设出椭圆的标准方程为,然后根据椭圆的离心率以及椭圆面积列出关于的方程组,求解方程组即可得答案【详解】由题意,设椭圆的方程为,由椭圆的离心率为,面积为,∴,解得,∴椭圆的方程为,故选:C.2、答案:C【解析】细心观察,寻求相邻项及项与序号之间的关系,同时联系相关知识,如等差数列、等比数列等,结合图形即可求解.【详解】由题意知,数列的各项为1,6,15,28,45,...所以,,,,,,所以.故选:C3、答案:B【解析】根据得到三角形为等腰三角形,然后结合双曲线的定义得到,设,进而作,得出,由此求出结果【详解】因为,所以,即所以,由双曲线的定义,知,设,则,易得,如图,作,为垂足,则,所以,即,即双曲线的离心率为.故选:B4、答案:A【解析】根据题意可得,圆心到直线的距离等于,即,求得,所以A选项是正确的.【点睛】判断直线与圆的位置关系的常见方法:(1)几何法:利用d与r的关系.(2)代数法:联立方程之后利用判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交.上述方法中常用的是几何法,点与圆的位置关系法适用于动直线问题5、答案:B【解析】由直径所对圆周角是直角,结合双曲线的几何性质和角平分线定义可解.【详解】由圆的性质可知,,,所以,因为,所以又因为平分,所以,由,得,所以,即所以故选:B6、答案:A【解析】利用空间向量基本定理进行计算.【详解】.故选:A7、答案:D【解析】如图建立空间直角坐标系,分别求出的坐标,由空间向量夹角公式即可求解.